Spaces:
Sleeping
Sleeping
import gradio as gr | |
import onnxruntime | |
from transformers import AutoTokenizer | |
import torch | |
token = AutoTokenizer.from_pretrained('distilroberta-base') | |
inf_session = onnxruntime.InferenceSession('classifier1-quantized.onnx') | |
input_name = inf_session.get_inputs()[0].name | |
output_name = inf_session.get_outputs()[0].name | |
classes = ['Art', 'Astrology', 'Biology', 'Chemistry', 'Economics', 'History', 'Literature', 'Philosophy', 'Physics', 'Politics', 'Psychology', 'Sociology'] | |
def classify(review): | |
input_ids = token(review)['input_ids'][:512] | |
logits = inf_session.run([output_name],{input_name : [input_ids]})[0] | |
logits = torch.FloatTensor(logits) | |
probs = torch.sigmoid(logits)[0] | |
x = 2 | |
return dict(zip(classes,map(float,probs))) | |
label = gr.outputs.Label(num_top_classes=5) | |
iface = gr.Interface(fn=classify,inputs='text',outputs = label) | |
iface.launch(inline=False) | |