import gradio as gr from fastai.vision.all import load_learner from fastai import * import torch import os from PIL import Image import pathlib temp = pathlib.PosixPath pathlib.PosixPath = pathlib.WindowsPath model_path = 'C:\pythons\Deep Learning\insect\insects-recognizer\models\model3-86_.pkl' model = load_learner(model_path) def result(path): pred,_,probability = model.predict(path) return {pred: float(probability.max())} path = 'test_images/' image_path = [] for i in os.listdir(path): image_path.append(path+i) image = gr.inputs.Image(shape =(128,128)) label = gr.outputs.Label() iface = gr.Interface(fn=result, inputs=image, outputs=label, examples = image_path) iface.launch(inline = False)