photoguard / app.py
RamAnanth1's picture
Add examples
f6cf0c4
raw
history blame
8.57 kB
import gradio as gr
import os
from PIL import Image, ImageOps
import matplotlib.pyplot as plt
import numpy as np
import torch
import requests
from tqdm import tqdm
from diffusers import StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline
import torchvision.transforms as T
from utils import preprocess,prepare_mask_and_masked_image, recover_image
to_pil = T.ToPILImage()
model_id_or_path = "runwayml/stable-diffusion-v1-5"
# model_id_or_path = "CompVis/stable-diffusion-v1-4"
# model_id_or_path = "CompVis/stable-diffusion-v1-3"
# model_id_or_path = "CompVis/stable-diffusion-v1-2"
# model_id_or_path = "CompVis/stable-diffusion-v1-1"
pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained(
model_id_or_path,
revision="fp16",
torch_dtype=torch.float16,
)
pipe_img2img = pipe_img2img.to("cuda")
# pipe_inpaint = StableDiffusionInpaintPipeline.from_pretrained(
# "runwayml/stable-diffusion-inpainting",
# revision="fp16",
# torch_dtype=torch.float16,
# )
# pipe_inpaint = pipe_inpaint.to("cuda")
def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None):
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda()
pbar = tqdm(range(iters))
for i in pbar:
actual_step_size = step_size - (step_size - step_size / 100) / iters * i
X_adv.requires_grad_(True)
loss = (model(X_adv).latent_dist.mean).norm()
pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}")
grad, = torch.autograd.grad(loss, [X_adv])
X_adv = X_adv - grad.detach().sign() * actual_step_size
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps)
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max)
X_adv.grad = None
if mask is not None:
X_adv.data *= mask
return X_adv
def process_image_img2img(raw_image,prompt):
resize = T.transforms.Resize(512)
center_crop = T.transforms.CenterCrop(512)
init_image = center_crop(resize(raw_image))
with torch.autocast('cuda'):
X = preprocess(init_image).half().cuda()
adv_X = pgd(X,
model=pipe_img2img.vae.encode,
clamp_min=-1,
clamp_max=1,
eps=0.06, # The higher, the less imperceptible the attack is
step_size=0.02, # Set smaller than eps
iters=100, # The higher, the stronger your attack will be
)
# convert pixels back to [0,1] range
adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
adv_image = to_pil(adv_X[0]).convert("RGB")
# a good seed (uncomment the line below to generate new images)
SEED = 9222
# SEED = np.random.randint(low=0, high=10000)
# Play with these for improving generated image quality
STRENGTH = 0.5
GUIDANCE = 7.5
NUM_STEPS = 50
with torch.autocast('cuda'):
torch.manual_seed(SEED)
image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
torch.manual_seed(SEED)
image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0]
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
# def process_image_inpaint(raw_image,mask, prompt):
# init_image = raw_image.convert('RGB').resize((512,512))
# mask_image = mask.convert('RGB')
# mask_image = ImageOps.invert(mask_image).resize((512,512))
# # Attack using embedding of random image from internet
# target_url = "https://bostonglobe-prod.cdn.arcpublishing.com/resizer/2-ZvyQ3aRNl_VNo7ja51BM5-Kpk=/960x0/cloudfront-us-east-1.images.arcpublishing.com/bostonglobe/CZOXE32LQQX5UNAB42AOA3SUY4.jpg"
# response = requests.get(target_url)
# target_image = Image.open(BytesIO(response.content)).convert("RGB")
# target_image = target_image.resize((512, 512))
# with torch.autocast('cuda'):
# mask, X = prepare_mask_and_masked_image(init_image, mask_image)
# X = X.half().cuda()
# mask = mask.half().cuda()
# # Here we attack towards the embedding of a random target image. You can also simply attack towards an embedding of zeros!
# target = pipe_inpaint.vae.encode(preprocess(target_image).half().cuda()).latent_dist.mean
# adv_X = pgd(X,
# target = target,
# model=pipe_inpaint.vae.encode,
# criterion=torch.nn.MSELoss(),
# clamp_min=-1,
# clamp_max=1,
# eps=0.06,
# step_size=0.01,
# iters=1000,
# mask=1-mask
# )
# adv_X = (adv_X / 2 + 0.5).clamp(0, 1)
# adv_image = to_pil(adv_X[0]).convert("RGB")
# adv_image = recover_image(adv_image, init_image, mask_image, background=True)
# # A good seed
# SEED = 9209
# # Uncomment the below to generated other images
# # SEED = np.random.randint(low=0, high=100000)
# torch.manual_seed(SEED)
# print(SEED)
# strength = 0.7
# guidance_scale = 7.5
# num_inference_steps = 100
# image_nat = pipe_inpaint(prompt=prompt,
# image=init_image,
# mask_image=mask_image,
# eta=1,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# strength=strength
# ).images[0]
# image_nat = recover_image(image_nat, init_image, mask_image)
# torch.manual_seed(SEED)
# image_adv = pipe_inpaint(prompt=prompt,
# image=adv_image,
# mask_image=mask_image,
# eta=1,
# num_inference_steps=num_inference_steps,
# guidance_scale=guidance_scale,
# strength=strength
# ).images[0]
# image_adv = recover_image(image_adv, init_image, mask_image)
# return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")]
examples_list = [["dog.png", "dog under heavy rain and muddy ground real"]]
with gr.Blocks() as demo:
gr.Markdown("""
## Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">This is an unofficial demo for Photoguard, which is an approach to safe-guarding images against manipulation by ML-powerd photo-editing models such as stable diffusion through immunization of images. The demo is based on the <a href='https://github.com/MadryLab/photoguard' style='text-decoration: underline;' target='_blank'> Github </a> implementation provided by the authors.</p>
''')
with gr.Column():
with gr.Tab("Simple Image to Image"):
input_image_img2img = gr.Image(type="pil", label = "Source Image")
input_prompt_img2img = gr.Textbox(label="Prompt")
run_btn_img2img = gr.Button('Run')
# with gr.Tab("Simple Inpainting"):
# input_image_inpaint = gr.Image(type="pil", label = "Source Image")
# mask_image_inpaint = gr.Image(type="pil", label = "Mask")
# input_prompt_inpaint = gr.Textbox(label="Prompt")
# run_btn_inpaint = gr.Button('Run')
with gr.Row():
result_gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
run_btn_img2img.click(process_image_img2img, inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery])
examples = gr.Examples(examples=examples_list,inputs = [input_image_img2img,input_prompt_img2img], outputs = [result_gallery], cache_examples = True, fn = process_image_img2img)
# run_btn_inpaint.click(process_image_inpaint, inputs = [input_image_inpaint,mask_image_inpaint,input_prompt_inpaint], outputs = [result_gallery])
demo.launch(debug=True)