Update aicore.py
Browse files
aicore.py
CHANGED
@@ -1,201 +1,123 @@
|
|
1 |
import asyncio
|
|
|
2 |
import logging
|
3 |
-
|
4 |
-
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"adaptability": "adapts to counter emerging challenges",
|
14 |
-
"fortification": "strengthens defensive parameters"
|
15 |
-
}
|
16 |
-
|
17 |
-
def __init__(self, name: str, symbol: str, defense: str):
|
18 |
-
self.name = name
|
19 |
-
self.symbol = symbol
|
20 |
-
self.defense = defense
|
21 |
-
|
22 |
-
def defend(self):
|
23 |
-
return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}"
|
24 |
-
|
25 |
-
# Core AI Perspectives
|
26 |
-
class AIPerspective:
|
27 |
-
PERSPECTIVES = {
|
28 |
-
"newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N",
|
29 |
-
"davinci": lambda q: f"Creative Insight: {q[::-1]}",
|
30 |
-
"quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty"
|
31 |
-
}
|
32 |
-
|
33 |
-
def __init__(self, active_perspectives: List[str] = None):
|
34 |
-
self.active = active_perspectives or list(self.PERSPECTIVES.keys())
|
35 |
-
|
36 |
-
async def analyze(self, question: str) -> List[str]:
|
37 |
-
return [self.PERSPECTIVES[p](question) for p in self.active]
|
38 |
-
|
39 |
-
# Quantum-Resistant Encryption Upgrade
|
40 |
-
class QuantumSafeEncryptor:
|
41 |
-
def __init__(self):
|
42 |
-
self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096)
|
43 |
-
self.public_key = self.private_key.public_key()
|
44 |
-
|
45 |
-
def hybrid_encrypt(self, data: str) -> bytes:
|
46 |
-
# Generate symmetric key
|
47 |
-
sym_key = Fernet.generate_key()
|
48 |
-
fernet = Fernet(sym_key)
|
49 |
-
|
50 |
-
# Encrypt data with symmetric encryption
|
51 |
-
encrypted_data = fernet.encrypt(data.encode())
|
52 |
-
|
53 |
-
# Encrypt symmetric key with post-quantum algorithm
|
54 |
-
encrypted_key = self.public_key.encrypt(
|
55 |
-
sym_key,
|
56 |
-
padding.OAEP(
|
57 |
-
mgf=padding.MGF1(algorithm=hashes.SHA512()),
|
58 |
-
algorithm=hashes.SHA512(),
|
59 |
-
label=None
|
60 |
-
)
|
61 |
-
)
|
62 |
-
|
63 |
-
return encrypted_key + b'||SEPARATOR||' + encrypted_data
|
64 |
-
|
65 |
-
# Neural Architecture Search Integration
|
66 |
-
class AINeuralOptimizer:
|
67 |
-
def __init__(self):
|
68 |
-
self.search_model = None
|
69 |
-
|
70 |
-
async def optimize_pipeline(self, dataset):
|
71 |
-
from autokeras import StructuredDataClassifier
|
72 |
-
self.search_model = StructuredDataClassifier(max_trials=10)
|
73 |
-
self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50)
|
74 |
-
|
75 |
-
def generate_architecture(self):
|
76 |
-
import tensorflow as tf
|
77 |
-
best_model = self.search_model.export_model()
|
78 |
-
return tf.keras.models.clone_model(best_model)
|
79 |
-
|
80 |
-
# Holographic Knowledge Graph
|
81 |
-
class HolographicKnowledge:
|
82 |
-
def __init__(self, uri, user, password):
|
83 |
-
from neo4j import GraphDatabase
|
84 |
-
self.driver = GraphDatabase.driver(uri, auth=(user, password))
|
85 |
-
|
86 |
-
async def store_relationship(self, entity1, relationship, entity2):
|
87 |
-
with self.driver.session() as session:
|
88 |
-
session.write_transaction(
|
89 |
-
self._create_relationship, entity1, relationship, entity2
|
90 |
-
)
|
91 |
-
|
92 |
-
@staticmethod
|
93 |
-
def _create_relationship(tx, e1, rel, e2):
|
94 |
-
query = (
|
95 |
-
"MERGE (a:Entity {name: $e1}) "
|
96 |
-
"MERGE (b:Entity {name: $e2}) "
|
97 |
-
f"MERGE (a)-[r:{rel}]->(b)"
|
98 |
-
)
|
99 |
-
tx.run(query, e1=e1, e2=e2)
|
100 |
-
|
101 |
-
# Self-Healing Mechanism
|
102 |
-
class SelfHealingSystem:
|
103 |
def __init__(self):
|
104 |
-
|
105 |
-
|
106 |
-
self.
|
107 |
-
|
108 |
-
|
109 |
-
async def
|
110 |
-
|
111 |
-
|
112 |
-
health = await self.check_health()
|
113 |
-
if health['status'] != 'GREEN':
|
114 |
-
self.heal_system(health)
|
115 |
-
await asyncio.sleep(60)
|
116 |
-
|
117 |
-
async def check_health(self):
|
118 |
-
import psutil
|
119 |
return {
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
123 |
}
|
124 |
|
125 |
-
def
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
def _clean_memory(self):
|
136 |
-
# Implement memory cleaning
|
137 |
-
pass
|
138 |
-
|
139 |
-
def _scale_out(self):
|
140 |
-
# Implement scaling out
|
141 |
-
pass
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
self.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
self.
|
170 |
-
self.
|
171 |
-
self.
|
172 |
-
self.
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
try:
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
# Element Defense
|
181 |
-
defenses = [e.defend() for e in self.elements
|
182 |
-
if e.name.lower() in question.lower()]
|
183 |
-
|
184 |
-
return {
|
185 |
-
"perspectives": perspectives,
|
186 |
-
"defenses": defenses,
|
187 |
-
"encrypted": self.security.hybrid_encrypt(question)
|
188 |
-
}
|
189 |
-
|
190 |
except Exception as e:
|
191 |
-
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
# Example Usage
|
195 |
async def main():
|
196 |
-
system
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
199 |
|
200 |
if __name__ == "__main__":
|
201 |
asyncio.run(main())
|
|
|
1 |
import asyncio
|
2 |
+
import json
|
3 |
import logging
|
4 |
+
import torch
|
5 |
+
import tkinter as tk
|
6 |
+
from tkinter import messagebox
|
7 |
+
from threading import Thread
|
8 |
+
from typing import Dict, Any
|
9 |
+
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
|
13 |
+
class AICore:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
+
if not torch.cuda.is_available():
|
16 |
+
raise RuntimeError("GPU not available. Ensure CUDA is installed and a compatible GPU is present.")
|
17 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
18 |
+
logging.info(f"Using device: {self.device}")
|
19 |
+
|
20 |
+
async def generate_response(self, query: str) -> Dict[str, Any]:
|
21 |
+
# Simulate AI response generation
|
22 |
+
await asyncio.sleep(1) # Simulate processing time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
return {
|
24 |
+
"query": query,
|
25 |
+
"response": f"AI response to: {query}",
|
26 |
+
"insights": ["Insight 1", "Insight 2"],
|
27 |
+
"security_level": 2,
|
28 |
+
"safety_analysis": {"toxicity": 0.1, "bias": 0.05, "privacy": []}
|
29 |
}
|
30 |
|
31 |
+
async def check_health(self) -> Dict[str, Any]:
|
32 |
+
# Simulate health check
|
33 |
+
await asyncio.sleep(1) # Simulate processing time
|
34 |
+
return {
|
35 |
+
"memory_usage": 30, # Example memory usage percentage
|
36 |
+
"cpu_load": 20, # Example CPU load percentage
|
37 |
+
"gpu_memory": self.get_gpu_memory(), # Get GPU memory usage
|
38 |
+
"response_time": 0.5 # Example response time in seconds
|
39 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
def get_gpu_memory(self) -> float:
|
42 |
+
if torch.cuda.is_available():
|
43 |
+
return torch.cuda.memory_allocated() / 1e9 # Convert bytes to GB
|
44 |
+
return 0.0
|
45 |
+
|
46 |
+
async def shutdown(self):
|
47 |
+
# Simulate shutdown process
|
48 |
+
await asyncio.sleep(1) # Simulate cleanup time
|
49 |
+
logging.info("AI Core shutdown complete.")
|
50 |
+
|
51 |
+
class AIApp(tk.Tk):
|
52 |
+
def __init__(self, ai_core):
|
53 |
+
super().__init__()
|
54 |
+
self.ai_core = ai_core
|
55 |
+
self.title("AI System Interface")
|
56 |
+
self.geometry("800x600")
|
57 |
+
self._running = True
|
58 |
+
self.create_widgets()
|
59 |
+
self._start_health_monitoring()
|
60 |
+
|
61 |
+
def create_widgets(self):
|
62 |
+
self.query_label = tk.Label(self, text="Enter your query:")
|
63 |
+
self.query_label.pack(pady=10)
|
64 |
+
self.query_entry = tk.Entry(self, width=100)
|
65 |
+
self.query_entry.pack(pady=10)
|
66 |
+
self.submit_button = tk.Button(self, text="Submit", command=self.submit_query)
|
67 |
+
self.submit_button.pack(pady=10)
|
68 |
+
self.response_area = tk.Text(self, height=20, width=100)
|
69 |
+
self.response_area.pack(pady=10)
|
70 |
+
self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
|
71 |
+
self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
|
72 |
+
|
73 |
+
def submit_query(self):
|
74 |
+
query = self.query_entry.get()
|
75 |
+
self.status_bar.config(text="Processing...")
|
76 |
+
Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
|
77 |
+
|
78 |
+
def _run_async_task(self, coroutine):
|
79 |
+
"""Run async task in a separate thread"""
|
80 |
+
loop = asyncio.new_event_loop()
|
81 |
+
asyncio.set_event_loop(loop)
|
82 |
try:
|
83 |
+
result = loop.run_until_complete(coroutine)
|
84 |
+
self.after(0, self._display_result, result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
except Exception as e:
|
86 |
+
self.after(0, self._show_error, str(e))
|
87 |
+
finally:
|
88 |
+
loop.close()
|
89 |
+
|
90 |
+
def _display_result(self, result: Dict):
|
91 |
+
"""Display results in the GUI"""
|
92 |
+
self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
|
93 |
+
self.status_bar.config(text="Query processed successfully")
|
94 |
+
|
95 |
+
def _show_error(self, message: str):
|
96 |
+
"""Display error messages to the user"""
|
97 |
+
messagebox.showerror("Error", message)
|
98 |
+
self.status_bar.config(text=f"Error: {message}")
|
99 |
+
|
100 |
+
def _start_health_monitoring(self):
|
101 |
+
"""Periodically check system health"""
|
102 |
+
def update_health():
|
103 |
+
if self._running:
|
104 |
+
health = asyncio.run(self.ai_core.check_health())
|
105 |
+
self.status_bar.config(
|
106 |
+
text=f"System Health - Memory: {health['memory_usage']}% | "
|
107 |
+
f"CPU: {health['cpu_load']}% | GPU: {health['gpu_memory']}GB | "
|
108 |
+
f"Response Time: {health['response_time']:.2f}s"
|
109 |
+
)
|
110 |
+
self.after(5000, update_health)
|
111 |
+
|
112 |
+
update_health()
|
113 |
|
|
|
114 |
async def main():
|
115 |
+
"""The main function initializes the AI system and starts the GUI."""
|
116 |
+
print("🧠 Hybrid AI System Initializing (Local Models)")
|
117 |
+
ai = AICore() # Initialize the AI core
|
118 |
+
app = AIApp(ai)
|
119 |
+
app.mainloop()
|
120 |
+
await ai.shutdown()
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
asyncio.run(main())
|