Raiff1982 commited on
Commit
42f42cb
·
verified ·
1 Parent(s): f64e159

Update aicore.py

Browse files
Files changed (1) hide show
  1. aicore.py +109 -187
aicore.py CHANGED
@@ -1,201 +1,123 @@
1
  import asyncio
 
2
  import logging
3
- from typing import List, Dict
4
- from cryptography.hazmat.primitives import hashes
5
- from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
6
- from cryptography.hazmat.primitives.asymmetric import rsa, padding
7
- from cryptography.fernet import Fernet
8
-
9
- # Simplified Element System
10
- class Element:
11
- DEFENSE_ACTIONS = {
12
- "evasion": "evades threats through strategic ambiguity",
13
- "adaptability": "adapts to counter emerging challenges",
14
- "fortification": "strengthens defensive parameters"
15
- }
16
-
17
- def __init__(self, name: str, symbol: str, defense: str):
18
- self.name = name
19
- self.symbol = symbol
20
- self.defense = defense
21
-
22
- def defend(self):
23
- return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}"
24
-
25
- # Core AI Perspectives
26
- class AIPerspective:
27
- PERSPECTIVES = {
28
- "newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N",
29
- "davinci": lambda q: f"Creative Insight: {q[::-1]}",
30
- "quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty"
31
- }
32
-
33
- def __init__(self, active_perspectives: List[str] = None):
34
- self.active = active_perspectives or list(self.PERSPECTIVES.keys())
35
-
36
- async def analyze(self, question: str) -> List[str]:
37
- return [self.PERSPECTIVES[p](question) for p in self.active]
38
-
39
- # Quantum-Resistant Encryption Upgrade
40
- class QuantumSafeEncryptor:
41
- def __init__(self):
42
- self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096)
43
- self.public_key = self.private_key.public_key()
44
-
45
- def hybrid_encrypt(self, data: str) -> bytes:
46
- # Generate symmetric key
47
- sym_key = Fernet.generate_key()
48
- fernet = Fernet(sym_key)
49
-
50
- # Encrypt data with symmetric encryption
51
- encrypted_data = fernet.encrypt(data.encode())
52
-
53
- # Encrypt symmetric key with post-quantum algorithm
54
- encrypted_key = self.public_key.encrypt(
55
- sym_key,
56
- padding.OAEP(
57
- mgf=padding.MGF1(algorithm=hashes.SHA512()),
58
- algorithm=hashes.SHA512(),
59
- label=None
60
- )
61
- )
62
-
63
- return encrypted_key + b'||SEPARATOR||' + encrypted_data
64
-
65
- # Neural Architecture Search Integration
66
- class AINeuralOptimizer:
67
- def __init__(self):
68
- self.search_model = None
69
-
70
- async def optimize_pipeline(self, dataset):
71
- from autokeras import StructuredDataClassifier
72
- self.search_model = StructuredDataClassifier(max_trials=10)
73
- self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50)
74
-
75
- def generate_architecture(self):
76
- import tensorflow as tf
77
- best_model = self.search_model.export_model()
78
- return tf.keras.models.clone_model(best_model)
79
-
80
- # Holographic Knowledge Graph
81
- class HolographicKnowledge:
82
- def __init__(self, uri, user, password):
83
- from neo4j import GraphDatabase
84
- self.driver = GraphDatabase.driver(uri, auth=(user, password))
85
-
86
- async def store_relationship(self, entity1, relationship, entity2):
87
- with self.driver.session() as session:
88
- session.write_transaction(
89
- self._create_relationship, entity1, relationship, entity2
90
- )
91
-
92
- @staticmethod
93
- def _create_relationship(tx, e1, rel, e2):
94
- query = (
95
- "MERGE (a:Entity {name: $e1}) "
96
- "MERGE (b:Entity {name: $e2}) "
97
- f"MERGE (a)-[r:{rel}]->(b)"
98
- )
99
- tx.run(query, e1=e1, e2=e2)
100
-
101
- # Self-Healing Mechanism
102
- class SelfHealingSystem:
103
  def __init__(self):
104
- from elasticsearch import Elasticsearch
105
- import sentry_sdk
106
- self.es = Elasticsearch()
107
- sentry_sdk.init(dsn="YOUR_SENTRY_DSN")
108
-
109
- async def monitor_system(self):
110
- import psutil
111
- while True:
112
- health = await self.check_health()
113
- if health['status'] != 'GREEN':
114
- self.heal_system(health)
115
- await asyncio.sleep(60)
116
-
117
- async def check_health(self):
118
- import psutil
119
  return {
120
- 'memory': psutil.virtual_memory().percent,
121
- 'cpu': psutil.cpu_percent(),
122
- 'response_time': self._measure_response_time()
 
 
123
  }
124
 
125
- def heal_system(self, health):
126
- if health['memory'] > 90:
127
- self._clean_memory()
128
- if health['response_time'] > 5000:
129
- self._scale_out()
130
-
131
- def _measure_response_time(self):
132
- # Implement response time measurement
133
- return 100 # Placeholder value
134
-
135
- def _clean_memory(self):
136
- # Implement memory cleaning
137
- pass
138
-
139
- def _scale_out(self):
140
- # Implement scaling out
141
- pass
142
 
143
- # Temporal Analysis Engine
144
- class TemporalProphet:
145
- def __init__(self):
146
- from prophet import Prophet
147
- self.models = {}
148
-
149
- async def analyze_temporal_patterns(self, data):
150
- model = Prophet(interval_width=0.95)
151
- model.fit(data)
152
- future = model.make_future_dataframe(periods=365)
153
- forecast = model.predict(future)
154
- return forecast
155
-
156
- def detect_anomalies(self, forecast):
157
- return forecast[
158
- (forecast['yhat_lower'] > forecast['cap']) |
159
- (forecast['yhat_upper'] < forecast['floor'])
160
- ]
161
-
162
- # Unified System
163
- class AISystem:
164
- def __init__(self):
165
- self.elements = [
166
- Element("Hydrogen", "H", "evasion"),
167
- Element("Carbon", "C", "adaptability")
168
- ]
169
- self.ai = AIPerspective()
170
- self.security = QuantumSafeEncryptor()
171
- self.self_healing = SelfHealingSystem()
172
- self.temporal_analysis = TemporalProphet()
173
- logging.basicConfig(level=logging.INFO)
174
-
175
- async def process_query(self, question: str) -> Dict:
 
 
 
 
 
 
 
 
176
  try:
177
- # AI Analysis
178
- perspectives = await self.ai.analyze(question)
179
-
180
- # Element Defense
181
- defenses = [e.defend() for e in self.elements
182
- if e.name.lower() in question.lower()]
183
-
184
- return {
185
- "perspectives": perspectives,
186
- "defenses": defenses,
187
- "encrypted": self.security.hybrid_encrypt(question)
188
- }
189
-
190
  except Exception as e:
191
- logging.error(f"Processing error: {e}")
192
- return {"error": str(e)}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
 
194
- # Example Usage
195
  async def main():
196
- system = AISystem()
197
- response = await system.process_query("How does Hydrogen defend?")
198
- print("AI Response:", response)
 
 
 
199
 
200
  if __name__ == "__main__":
201
  asyncio.run(main())
 
1
  import asyncio
2
+ import json
3
  import logging
4
+ import torch
5
+ import tkinter as tk
6
+ from tkinter import messagebox
7
+ from threading import Thread
8
+ from typing import Dict, Any
9
+
10
+ # Set up logging
11
+ logging.basicConfig(level=logging.INFO)
12
+
13
+ class AICore:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  def __init__(self):
15
+ if not torch.cuda.is_available():
16
+ raise RuntimeError("GPU not available. Ensure CUDA is installed and a compatible GPU is present.")
17
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
18
+ logging.info(f"Using device: {self.device}")
19
+
20
+ async def generate_response(self, query: str) -> Dict[str, Any]:
21
+ # Simulate AI response generation
22
+ await asyncio.sleep(1) # Simulate processing time
 
 
 
 
 
 
 
23
  return {
24
+ "query": query,
25
+ "response": f"AI response to: {query}",
26
+ "insights": ["Insight 1", "Insight 2"],
27
+ "security_level": 2,
28
+ "safety_analysis": {"toxicity": 0.1, "bias": 0.05, "privacy": []}
29
  }
30
 
31
+ async def check_health(self) -> Dict[str, Any]:
32
+ # Simulate health check
33
+ await asyncio.sleep(1) # Simulate processing time
34
+ return {
35
+ "memory_usage": 30, # Example memory usage percentage
36
+ "cpu_load": 20, # Example CPU load percentage
37
+ "gpu_memory": self.get_gpu_memory(), # Get GPU memory usage
38
+ "response_time": 0.5 # Example response time in seconds
39
+ }
 
 
 
 
 
 
 
 
40
 
41
+ def get_gpu_memory(self) -> float:
42
+ if torch.cuda.is_available():
43
+ return torch.cuda.memory_allocated() / 1e9 # Convert bytes to GB
44
+ return 0.0
45
+
46
+ async def shutdown(self):
47
+ # Simulate shutdown process
48
+ await asyncio.sleep(1) # Simulate cleanup time
49
+ logging.info("AI Core shutdown complete.")
50
+
51
+ class AIApp(tk.Tk):
52
+ def __init__(self, ai_core):
53
+ super().__init__()
54
+ self.ai_core = ai_core
55
+ self.title("AI System Interface")
56
+ self.geometry("800x600")
57
+ self._running = True
58
+ self.create_widgets()
59
+ self._start_health_monitoring()
60
+
61
+ def create_widgets(self):
62
+ self.query_label = tk.Label(self, text="Enter your query:")
63
+ self.query_label.pack(pady=10)
64
+ self.query_entry = tk.Entry(self, width=100)
65
+ self.query_entry.pack(pady=10)
66
+ self.submit_button = tk.Button(self, text="Submit", command=self.submit_query)
67
+ self.submit_button.pack(pady=10)
68
+ self.response_area = tk.Text(self, height=20, width=100)
69
+ self.response_area.pack(pady=10)
70
+ self.status_bar = tk.Label(self, text="Ready", bd=1, relief=tk.SUNKEN, anchor=tk.W)
71
+ self.status_bar.pack(side=tk.BOTTOM, fill=tk.X)
72
+
73
+ def submit_query(self):
74
+ query = self.query_entry.get()
75
+ self.status_bar.config(text="Processing...")
76
+ Thread(target=self._run_async_task, args=(self.ai_core.generate_response(query),)).start()
77
+
78
+ def _run_async_task(self, coroutine):
79
+ """Run async task in a separate thread"""
80
+ loop = asyncio.new_event_loop()
81
+ asyncio.set_event_loop(loop)
82
  try:
83
+ result = loop.run_until_complete(coroutine)
84
+ self.after(0, self._display_result, result)
 
 
 
 
 
 
 
 
 
 
 
85
  except Exception as e:
86
+ self.after(0, self._show_error, str(e))
87
+ finally:
88
+ loop.close()
89
+
90
+ def _display_result(self, result: Dict):
91
+ """Display results in the GUI"""
92
+ self.response_area.insert(tk.END, json.dumps(result, indent=2) + "\n\n")
93
+ self.status_bar.config(text="Query processed successfully")
94
+
95
+ def _show_error(self, message: str):
96
+ """Display error messages to the user"""
97
+ messagebox.showerror("Error", message)
98
+ self.status_bar.config(text=f"Error: {message}")
99
+
100
+ def _start_health_monitoring(self):
101
+ """Periodically check system health"""
102
+ def update_health():
103
+ if self._running:
104
+ health = asyncio.run(self.ai_core.check_health())
105
+ self.status_bar.config(
106
+ text=f"System Health - Memory: {health['memory_usage']}% | "
107
+ f"CPU: {health['cpu_load']}% | GPU: {health['gpu_memory']}GB | "
108
+ f"Response Time: {health['response_time']:.2f}s"
109
+ )
110
+ self.after(5000, update_health)
111
+
112
+ update_health()
113
 
 
114
  async def main():
115
+ """The main function initializes the AI system and starts the GUI."""
116
+ print("🧠 Hybrid AI System Initializing (Local Models)")
117
+ ai = AICore() # Initialize the AI core
118
+ app = AIApp(ai)
119
+ app.mainloop()
120
+ await ai.shutdown()
121
 
122
  if __name__ == "__main__":
123
  asyncio.run(main())