Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import tempfile
|
4 |
+
from pptx import Presentation
|
5 |
+
from docx import Document
|
6 |
+
|
7 |
+
from langchain.document_loaders import PyPDFLoader, TextLoader
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
from langchain.chains import LLMChain
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
|
15 |
+
from ibm_watson_machine_learning.foundation_models import Model
|
16 |
+
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
|
17 |
+
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
|
18 |
+
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
|
19 |
+
|
20 |
+
# Initialize index to None
|
21 |
+
index = None
|
22 |
+
rag_chain = None # Initialize rag_chain as None by default
|
23 |
+
|
24 |
+
# Custom loader for DOCX files
|
25 |
+
class DocxLoader:
|
26 |
+
def __init__(self, file_path):
|
27 |
+
self.file_path = file_path
|
28 |
+
|
29 |
+
def load(self):
|
30 |
+
document = Document(self.file_path)
|
31 |
+
text_content = []
|
32 |
+
for para in document.paragraphs:
|
33 |
+
text_content.append(para.text)
|
34 |
+
return " ".join(text_content)
|
35 |
+
|
36 |
+
# Custom loader for PPTX files
|
37 |
+
class PptxLoader:
|
38 |
+
def __init__(self, file_path):
|
39 |
+
self.file_path = file_path
|
40 |
+
|
41 |
+
def load(self):
|
42 |
+
presentation = Presentation(self.file_path)
|
43 |
+
text_content = []
|
44 |
+
for slide in presentation.slides:
|
45 |
+
for shape in slide.shapes:
|
46 |
+
if hasattr(shape, "text"):
|
47 |
+
text_content.append(shape.text)
|
48 |
+
return " ".join(text_content)
|
49 |
+
|
50 |
+
# Caching function to load various file types
|
51 |
+
@st.cache_resource
|
52 |
+
def load_file(file_name, file_type):
|
53 |
+
loaders = []
|
54 |
+
|
55 |
+
if file_type == "pdf":
|
56 |
+
loaders = [PyPDFLoader(file_name)]
|
57 |
+
elif file_type == "docx":
|
58 |
+
loader = DocxLoader(file_name)
|
59 |
+
text = loader.load()
|
60 |
+
|
61 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
62 |
+
temp_file.write(text.encode("utf-8"))
|
63 |
+
temp_file_path = temp_file.name
|
64 |
+
loaders = [TextLoader(temp_file_path)]
|
65 |
+
|
66 |
+
elif file_type == "txt":
|
67 |
+
loaders = [TextLoader(file_name)]
|
68 |
+
|
69 |
+
elif file_type == "pptx":
|
70 |
+
loader = PptxLoader(file_name)
|
71 |
+
text = loader.load()
|
72 |
+
|
73 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
|
74 |
+
temp_file.write(text.encode("utf-8"))
|
75 |
+
temp_file_path = temp_file.name
|
76 |
+
loaders = [TextLoader(temp_file_path)]
|
77 |
+
|
78 |
+
else:
|
79 |
+
st.error("Unsupported file type.")
|
80 |
+
return None
|
81 |
+
|
82 |
+
index = VectorstoreIndexCreator(
|
83 |
+
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
|
84 |
+
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
|
85 |
+
).from_loaders(loaders)
|
86 |
+
return index
|
87 |
+
|
88 |
+
def format_history():
|
89 |
+
return ""
|
90 |
+
|
91 |
+
# Watsonx API setup using environment variables
|
92 |
+
watsonx_api_key = os.getenv("WATSONX_API_KEY")
|
93 |
+
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
|
94 |
+
|
95 |
+
if not watsonx_api_key or not watsonx_project_id:
|
96 |
+
st.error("API Key or Project ID is not set. Please set them as environment variables.")
|
97 |
+
|
98 |
+
prompt_template_br = PromptTemplate(
|
99 |
+
input_variables=["context", "question"],
|
100 |
+
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
101 |
+
I am a helpful assistant.
|
102 |
+
|
103 |
+
<|eot_id|>
|
104 |
+
{context}
|
105 |
+
<|start_header_id|>user<|end_header_id|>
|
106 |
+
{question}<|eot_id|>
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
|
110 |
+
with st.sidebar:
|
111 |
+
st.title("Watsonx RAG with Multiple docs")
|
112 |
+
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
|
113 |
+
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
|
114 |
+
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
|
115 |
+
parameters = {
|
116 |
+
GenParams.DECODING_METHOD: decoding_method,
|
117 |
+
GenParams.MAX_NEW_TOKENS: max_new_tokens,
|
118 |
+
GenParams.MIN_NEW_TOKENS: 1,
|
119 |
+
GenParams.TEMPERATURE: 0,
|
120 |
+
GenParams.TOP_K: 50,
|
121 |
+
GenParams.TOP_P: 1,
|
122 |
+
GenParams.STOP_SEQUENCES: [],
|
123 |
+
GenParams.REPETITION_PENALTY: 1
|
124 |
+
}
|
125 |
+
st.info("Upload a PDF, DOCX, TXT, or PPTX file to use RAG")
|
126 |
+
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx"])
|
127 |
+
if uploaded_file is not None:
|
128 |
+
bytes_data = uploaded_file.read()
|
129 |
+
st.write("Filename:", uploaded_file.name)
|
130 |
+
|
131 |
+
with open(uploaded_file.name, 'wb') as f:
|
132 |
+
f.write(bytes_data)
|
133 |
+
|
134 |
+
file_type = uploaded_file.name.split('.')[-1].lower()
|
135 |
+
index = load_file(uploaded_file.name, file_type)
|
136 |
+
|
137 |
+
model_name = watsonx_model
|
138 |
+
|
139 |
+
def clear_messages():
|
140 |
+
st.session_state.messages = []
|
141 |
+
|
142 |
+
st.button('Clear messages', on_click=clear_messages)
|
143 |
+
|
144 |
+
st.info("Setting up Watsonx...")
|
145 |
+
|
146 |
+
my_credentials = {
|
147 |
+
"url": "https://us-south.ml.cloud.ibm.com",
|
148 |
+
"apikey": watsonx_api_key
|
149 |
+
}
|
150 |
+
params = parameters
|
151 |
+
project_id = watsonx_project_id
|
152 |
+
space_id = None
|
153 |
+
verify = False
|
154 |
+
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
|
155 |
+
|
156 |
+
if model:
|
157 |
+
st.info(f"Model {model_name} ready.")
|
158 |
+
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
|
159 |
+
|
160 |
+
if chain:
|
161 |
+
st.info("Chat ready.")
|
162 |
+
|
163 |
+
# Only create rag_chain if index is successfully created
|
164 |
+
if index is not None:
|
165 |
+
rag_chain = RetrievalQA.from_chain_type(
|
166 |
+
llm=model,
|
167 |
+
chain_type="stuff",
|
168 |
+
retriever=index.vectorstore.as_retriever(),
|
169 |
+
chain_type_kwargs={"prompt": prompt_template_br},
|
170 |
+
return_source_documents=False,
|
171 |
+
verbose=True
|
172 |
+
)
|
173 |
+
st.info("Document-based retrieval is ready.")
|
174 |
+
else:
|
175 |
+
st.warning("No document uploaded. Answering common queries without retrieval.")
|
176 |
+
|
177 |
+
# Chat loop for handling queries
|
178 |
+
if "messages" not in st.session_state:
|
179 |
+
st.session_state.messages = []
|
180 |
+
|
181 |
+
for message in st.session_state.messages:
|
182 |
+
st.chat_message(message["role"]).markdown(message["content"])
|
183 |
+
|
184 |
+
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
|
185 |
+
|
186 |
+
if prompt:
|
187 |
+
st.chat_message("user").markdown(prompt)
|
188 |
+
|
189 |
+
# Answer based on availability of rag_chain or chain
|
190 |
+
if rag_chain:
|
191 |
+
response_text = rag_chain.run(prompt).strip()
|
192 |
+
else:
|
193 |
+
# Use general model-based response if rag_chain is not available
|
194 |
+
response_text = chain.run(question=prompt, context=format_history()).strip("<|start_header_id|>assistant<|end_header_id|>").strip("<|eot_id|>")
|
195 |
+
|
196 |
+
# Store and display conversation
|
197 |
+
st.session_state.messages.append({'role': 'User', 'content': prompt})
|
198 |
+
st.chat_message("assistant").markdown(response_text)
|
199 |
+
st.session_state.messages.append({'role': 'Assistant', 'content': response_text})
|