File size: 7,294 Bytes
8423658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
import streamlit as st
import tempfile
import pandas as pd
import json
import xml.etree.ElementTree as ET
import yaml
from bs4 import BeautifulSoup
from pptx import Presentation
from docx import Document
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods
# Initialize index to None
index = None
rag_chain = None # Initialize rag_chain as None by default
# Custom loader for DOCX files
class DocxLoader:
def __init__(self, file_path):
self.file_path = file_path
def load(self):
document = Document(self.file_path)
text_content = [para.text for para in document.paragraphs]
return " ".join(text_content)
# Custom loader for PPTX files
class PptxLoader:
def __init__(self, file_path):
self.file_path = file_path
def load(self):
presentation = Presentation(self.file_path)
text_content = [shape.text for slide in presentation.slides for shape in slide.shapes if hasattr(shape, "text")]
return " ".join(text_content)
# Custom loader for additional file types
def load_csv(file_path):
df = pd.read_csv(file_path)
return df.to_string(index=False)
def load_json(file_path):
with open(file_path, 'r') as file:
data = json.load(file)
return json.dumps(data, indent=2)
def load_xml(file_path):
tree = ET.parse(file_path)
root = tree.getroot()
return ET.tostring(root, encoding="unicode")
def load_yaml(file_path):
with open(file_path, 'r') as file:
data = yaml.safe_load(file)
return yaml.dump(data)
def load_html(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
return soup.get_text()
# Caching function to load various file types
@st.cache_resource
def load_file(file_name, file_type):
loaders = []
if file_type == "pdf":
loaders = [PyPDFLoader(file_name)]
elif file_type == "docx":
loader = DocxLoader(file_name)
text = loader.load()
elif file_type == "pptx":
loader = PptxLoader(file_name)
text = loader.load()
elif file_type == "txt":
loaders = [TextLoader(file_name)]
elif file_type == "csv":
text = load_csv(file_name)
elif file_type == "json":
text = load_json(file_name)
elif file_type == "xml":
text = load_xml(file_name)
elif file_type == "yaml":
text = load_yaml(file_name)
elif file_type == "html":
text = load_html(file_name)
else:
st.error("Unsupported file type.")
return None
# Use TextLoader for intermediate text files from custom loaders
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
temp_file.write(text.encode("utf-8"))
temp_file_path = temp_file.name
loaders = [TextLoader(temp_file_path)]
index = VectorstoreIndexCreator(
embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
).from_loaders(loaders)
return index
# Watsonx API setup
watsonx_api_key = os.getenv("WATSONX_API_KEY")
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")
if not watsonx_api_key or not watsonx_project_id:
st.error("API Key or Project ID is not set. Please set them as environment variables.")
prompt_template_br = PromptTemplate(
input_variables=["context", "question"],
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
I am a helpful assistant.
<|eot_id|>
{context}
<|start_header_id|>user<|end_header_id|>
{question}<|eot_id|>
"""
)
with st.sidebar:
st.title("Watsonx RAG with Multiple docs")
watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
parameters = {
GenParams.DECODING_METHOD: decoding_method,
GenParams.MAX_NEW_TOKENS: max_new_tokens,
GenParams.MIN_NEW_TOKENS: 1,
GenParams.TEMPERATURE: 0,
GenParams.TOP_K: 50,
GenParams.TOP_P: 1,
GenParams.STOP_SEQUENCES: [],
GenParams.REPETITION_PENALTY: 1
}
st.info("Upload a file to use RAG")
uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx", "csv", "json", "xml", "yaml", "html"])
if uploaded_file is not None:
bytes_data = uploaded_file.read()
st.write("Filename:", uploaded_file.name)
with open(uploaded_file.name, 'wb') as f:
f.write(bytes_data)
file_type = uploaded_file.name.split('.')[-1].lower()
index = load_file(uploaded_file.name, file_type)
model_name = watsonx_model
st.info("Setting up Watsonx...")
my_credentials = {
"url": "https://us-south.ml.cloud.ibm.com",
"apikey": watsonx_api_key
}
params = parameters
project_id = watsonx_project_id
space_id = None
verify = False
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))
if model:
st.info(f"Model {model_name} ready.")
chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)
if chain and index is not None:
rag_chain = RetrievalQA.from_chain_type(
llm=model,
chain_type="stuff",
retriever=index.vectorstore.as_retriever(),
chain_type_kwargs={"prompt": prompt_template_br},
return_source_documents=False,
verbose=True
)
st.info("Document-based retrieval is ready.")
else:
st.warning("No document uploaded or chain setup issue.")
# Chat loop
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
st.chat_message(message["role"]).markdown(message["content"])
prompt = st.chat_input("Ask your question here", disabled=False if chain else True)
if prompt:
st.chat_message("user").markdown(prompt)
if rag_chain:
response_text = rag_chain.run(prompt).strip()
else:
response_text = chain.run(question=prompt, context="").strip()
st.session_state.messages.append({'role': 'User', 'content': prompt})
st.chat_message("assistant").markdown(response_text)
st.session_state.messages.append({'role': 'Assistant', 'content': response_text})
# requirements.txt
# Streamlit
# pandas
# beautifulsoup4
# ibm-watson-machine-learning
# python-pptx
# python-docx
# PyYAML
# xml
|