File size: 6,615 Bytes
4896a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b5e1a
4896a0b
82b5e1a
4896a0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
from langchain.document_loaders import PyPDFLoader, TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
import streamlit as st
import tempfile

from ibm_watson_machine_learning.foundation_models import Model
from ibm_watson_machine_learning.foundation_models.extensions.langchain import WatsonxLLM
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams
from ibm_watson_machine_learning.foundation_models.utils.enums import DecodingMethods

from pptx import Presentation
from docx import Document

# Initialize index to None
index = None

# Custom loader for DOCX files
class DocxLoader:
    def __init__(self, file_path):
        self.file_path = file_path

    def load(self):
        document = Document(self.file_path)
        text_content = []
        for para in document.paragraphs:
            text_content.append(para.text)
        return " ".join(text_content)

# Custom loader for PPTX files
class PptxLoader:
    def __init__(self, file_path):
        self.file_path = file_path

    def load(self):
        presentation = Presentation(self.file_path)
        text_content = []
        for slide in presentation.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text_content.append(shape.text)
        return " ".join(text_content)

# Caching function to load various file types
@st.cache_resource
def load_file(file_name, file_type):
    loaders = []
    
    if file_type == "pdf":
        loaders = [PyPDFLoader(file_name)]
    elif file_type == "docx":
        loader = DocxLoader(file_name)
        text = loader.load()
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
            temp_file.write(text.encode("utf-8"))
            temp_file_path = temp_file.name
        loaders = [TextLoader(temp_file_path)]
        
    elif file_type == "txt":
        loaders = [TextLoader(file_name)]
        
    elif file_type == "pptx":
        loader = PptxLoader(file_name)
        text = loader.load()
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".txt") as temp_file:
            temp_file.write(text.encode("utf-8"))
            temp_file_path = temp_file.name
        loaders = [TextLoader(temp_file_path)]
        
    else:
        st.error("Unsupported file type.")
        return None

    index = VectorstoreIndexCreator(
        embedding=HuggingFaceEmbeddings(model_name="all-MiniLM-L12-v2"),
        text_splitter=RecursiveCharacterTextSplitter(chunk_size=450, chunk_overlap=50)
    ).from_loaders(loaders)
    return index

def format_history():
    return ""

# Watsonx API setup using environment variables
watsonx_api_key = os.getenv("WATSONX_API_KEY")
watsonx_project_id = os.getenv("WATSONX_PROJECT_ID")

if not watsonx_api_key or not watsonx_project_id:
    st.error("API Key or Project ID is not set. Please set them as environment variables.")

prompt_template_br = PromptTemplate(
    input_variables=["context", "question"], 
    template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
I am a helpful assistant.

<|eot_id|>
{context}
<|start_header_id|>user<|end_header_id|>
{question}<|eot_id|>
"""
)

with st.sidebar:
    st.title("Watsonx RAG with Multiple docs")
    watsonx_model = st.selectbox("Model", ["meta-llama/llama-3-405b-instruct", "codellama/codellama-34b-instruct-hf", "ibm/granite-20b-multilingual"])
    max_new_tokens = st.slider("Max output tokens", min_value=100, max_value=4000, value=600, step=100)
    decoding_method = st.radio("Decoding", (DecodingMethods.GREEDY.value, DecodingMethods.SAMPLE.value))
    parameters = {
        GenParams.DECODING_METHOD: decoding_method,
        GenParams.MAX_NEW_TOKENS: max_new_tokens,
        GenParams.MIN_NEW_TOKENS: 1,
        GenParams.TEMPERATURE: 0,
        GenParams.TOP_K: 50,
        GenParams.TOP_P: 1,
        GenParams.STOP_SEQUENCES: [],
        GenParams.REPETITION_PENALTY: 1
    }
    st.info("Upload a PDF, DOCX, TXT, or PPTX file to use RAG")
    uploaded_file = st.file_uploader("Upload file", accept_multiple_files=False, type=["pdf", "docx", "txt", "pptx"])
    if uploaded_file is not None:
        bytes_data = uploaded_file.read()
        st.write("Filename:", uploaded_file.name)
        
        with open(uploaded_file.name, 'wb') as f:
            f.write(bytes_data)

        file_type = uploaded_file.name.split('.')[-1].lower()
        index = load_file(uploaded_file.name, file_type)

    model_name = watsonx_model

    def clear_messages():
        st.session_state.messages = []

    st.button('Clear messages', on_click=clear_messages)

st.info("Setting up Watsonx...")

my_credentials = {
    "url": "https://us-south.ml.cloud.ibm.com",
    "apikey": watsonx_api_key
}
params = parameters
project_id = watsonx_project_id
space_id = None
verify = False
model = WatsonxLLM(model=Model(model_name, my_credentials, params, project_id, space_id, verify))

if model:
    st.info(f"Model {model_name} ready.")
    chain = LLMChain(llm=model, prompt=prompt_template_br, verbose=True)

if chain:
    st.info("Chat ready.")
    if index:
        rag_chain = RetrievalQA.from_chain_type(
            llm=model,
            chain_type="stuff",
            retriever=index.vectorstore.as_retriever(),
            chain_type_kwargs={"prompt": prompt_template_br},
            return_source_documents=False,
            verbose=True
        )
        st.info("Chat with document ready.")

if "messages" not in st.session_state:
    st.session_state.messages = []

for message in st.session_state.messages:
    st.chat_message(message["role"]).markdown(message["content"])

prompt = st.chat_input("Ask your question here", disabled=False if chain else True)

if prompt:
    st.chat_message("user").markdown(prompt)

    response_text = None
    if rag_chain:
        response_text = rag_chain.run(prompt).strip()
    
    if not response_text:
        response = chain.run(question=prompt, context=format_history())
        response_text = response.strip("<|start_header_id|>assistant<|end_header_id|>").strip("<|eot_id|>")
        
    st.session_state.messages.append({'role': 'User', 'content': prompt })
    st.chat_message("assistant").markdown(response_text)
    st.session_state.messages.append({'role': 'Assistant', 'content': response_text })