Spaces:
Runtime error
Runtime error
File size: 23,954 Bytes
4014562 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
from typing import Dict, Optional
import numpy as np
import torch
import itertools
import torch
from torch.utils.data import Dataset
import json
import random
from collections.abc import Mapping
from typing import Dict, Optional, List, Any, NewType
import pandas as pd
from torch.utils.data import DataLoader
from os.path import join
import os
import gensim.downloader
import h5py
import time
from tqdm import tqdm
def getTokenizedLabelDescriptions(data_args, desc_file, tokenizer):
padding = "max_length" if data_args.pad_to_max_length else False
max_seq_length = min(data_args.label_max_seq_length, tokenizer.model_max_length)
label_descs = json.load(open(desc_file, encoding = 'utf-8'))
return {label_key: [
tokenizer(
desc,
truncation=True,
padding=padding,
max_length=max_seq_length,
return_tensors='pt'
)
for desc in descs[1]] for label_key, descs in label_descs.items()}
class SemSupDataset(Dataset):
def __init__(self, input_dataset, data_args, label_descriptions_file, label_to_id, id_to_label, tokenizer, clsas_descs_len = None, return_desc_embeddings = False, sampleRandom : int = -1, cl_min_positive_descs = 20, useSemSup = True, seen_labels = None, add_label_name = False, max_descs_per_label = 999999, use_precomputed_embeddings = '', bm_short_file = '', ignore_pos_labels_file = '', isTrain = True, class_descs_tokenized = None, choice_indexes = None):
self.input_dataset = input_dataset
self.sampleRandom = sampleRandom
self.cl_min_positive_descs = cl_min_positive_descs
self.semsup = useSemSup
self.seen_labels = seen_labels
self.add_label_name = add_label_name
self.max_descs_per_label = max_descs_per_label
self.use_precomputed_embeddings = use_precomputed_embeddings
self.choice_indexes = choice_indexes
self.bmshortfile = bm_short_file
self.useBMShort = True if self.bmshortfile!='' else False
self.data_args = data_args
self.tok_format = 0
self.isTrain = isTrain
# if data_args.large_dset:
# Instead of loading the
self.coil_cluster_map = None
try:
if data_args.coil_cluster_mapping_path:
self.coil_cluster_map = json.load(open(data_args.coil_cluster_mapping_path))
except:
print('Failed to load cluster map for some reason')
self.coil_cluster_map = None
self.ignore_pos_labels_file = ignore_pos_labels_file
if self.ignore_pos_labels_file:
self.ignored_labels = [[y.strip() for y in x.split('\t') if y.strip()!=''] for x in open(self.ignore_pos_labels_file).readlines()]
else:
self.ignored_labels = False
if self.useBMShort and not data_args.large_dset:
self.shortlists = [[y.strip() for y in x.split('\t')] for x in open(self.bmshortfile).readlines()]
if self.semsup and not data_args.large_dset:
self.data_args = data_args
self.label_descriptions_file = label_descriptions_file
self.label_to_id = label_to_id
self.id_to_label = id_to_label
if self.seen_labels is not None and isinstance(self.seen_labels[0], str):
self.seen_labels = np.array([self.label_to_id[x] for x in self.seen_labels])
self.tokenizer = tokenizer
if class_descs_len is None:
js_file = json.load(open(self.label_descriptions_file, encoding = 'utf-8'))
self.class_descs_len = self.tokenize_class_descs(js_file, return_lengths = True)
self.class_descs = self.tokenize_class_descs(js_file)
else:
self.class_descs_len = class_descs_len
self.return_desc_embeddings = return_desc_embeddings
self.label_max_seq_length = data_args.label_max_seq_length
if return_desc_embeddings:
self.save_tokenized_descs(self.add_label_name)
if self.use_precomputed_embeddings:
self.computed_desc_inputs_embeds = torch.from_numpy(np.load(self.use_precomputed_embeddings))
if self.semsup and data_args.large_dset:
self.data_args = data_args
self.label_descriptions_file = label_descriptions_file
self.label_to_id = label_to_id
self.id_to_label = id_to_label
# No concept of seen labels over here, directly load the shortlists
self.tokenizer = tokenizer
self.return_desc_embeddings = return_desc_embeddings
self.label_max_seq_length = data_args.label_max_seq_length
to_save = True
if os.path.exists(data_args.tokenized_descs_file):
print('Path Exists')
if data_args.tok_format == 1:
self.tok_format = 1
if class_descs_tokenized is not None:
self.class_descs_tokenized = class_descs_tokenized
else:
if data_args.tokenized_descs_file.endswith('h5'):
self.class_descs_tokenized = h5py.File(data_args.tokenized_descs_file) # np.load(data_args.tokenized_descs_file, allow_pickle=True).item()
self.tok_format = 1
else:
self.class_descs_tokenized = np.load(data_args.tokenized_descs_file, allow_pickle=True)
# TODO: Fix this hardcoding
# if len(arr) < int(1e6):
# to_save = True # Possibly Corrupt File
# # All set, load the file
# else:
to_save = False
js_file = json.load(open(self.label_descriptions_file, encoding = 'utf-8'))
print('Loaded js File')
self.class_descs_len = self.tokenize_class_descs(js_file, return_lengths = True)
if to_save:
self.class_descs = self.tokenize_class_descs(js_file)
print('Begin Tokenization Process')
self.save_tokenized_descs(self.add_label_name)
print('Saving Tokenized Descriptions')
import pickle
pickle.dump(self.class_descs_tokenized, open(data_args.tokenized_descs_file,'wb'))
print(len(self.class_descs_tokenized))
3/0
file = h5py.File(data_args.tokenized_descs_file,'w')
for key in tqdm(self.class_descs_tokenized):
key_h5 = key
if key.find('/') != -1:
print('There may be issue with', key)
key_h5 = key.replace('/','\/')
file.create_dataset(key_h5+'/'+'input_ids', data = np.array(self.class_descs_tokenized[key]['input_ids']))
file[key_h5].create_dataset('attention_mask', data = np.array(self.class_descs_tokenized[key]['attention_mask']))
# else:
# self.class_descs_tokenized = np.load(data_args.tokenized_descs_file).item()
if isTrain:
self.shortlists = h5py.File(data_args.train_tfidf_short)['data']
else:
print('Testtt File Loaded')
self.shortlists = h5py.File(data_args.test_tfidf_short)['data']
try:
del self.class_descs
except: ...
if self.tok_format != 1:
self.class_descs_tokenized = pd.DataFrame({k: [np.array(x) for i, x in enumerate(v.values()) if i != 1] for k,v in self.class_descs_tokenized.items()})
def tokenize_class_descs(self, label_descs, return_lengths = False):
if return_lengths == 1:
return {
label_key: min(descs[0],self.max_descs_per_label) for label_key, descs in label_descs.items()
} # descs 0 is the length
else:
return {
label_key: descs[1][:self.max_descs_per_label] for label_key, descs in label_descs.items()
}
def save_tokenized_descs(self, add_label_name = False):
self.class_descs_tokenized = dict()
for label_key in tqdm(list(self.class_descs.keys())):
descs_len = self.class_descs_len[label_key]
descs = self.class_descs[label_key]
self.class_descs_tokenized[label_key] = self.tokenizer(
[label_key + ". " + x for x in descs] if add_label_name else
descs,
max_length = self.label_max_seq_length, padding = 'max_length', truncation= True)
# del self.class_descs_tokenized[label_key]['token_type_ids']
def __len__(self):
return len(self.input_dataset)
def get_item_for_large_dset(self, idx, item):
if self.choice_indexes is not None:
idx = int(self.choice_indexes[idx])
# print(idx)
shortlists = self.shortlists[idx]
labels_new = item['label']
if self.sampleRandom != -1:
if self.sampleRandom < len(shortlists):
shortlists = np.random.choice(shortlists, self.sampleRandom, replace = False)
elif self.sampleRandom > len(shortlists):
# randomly choose from all remaining labels
shortlists = shortlists.tolist() + [self.label_to_id[x] for x in np.random.choice(self.seen_labels, self.sampleRandom - len(shortlists), replace = False)]
if self.isTrain:
pos_labels = np.where(np.array(labels_new) == 1)[0]
item['all_candidate_labels'] = np.unique(np.concatenate([pos_labels, shortlists]))[:len(shortlists)]
else:
item['all_candidate_labels'] = np.unique(shortlists)
if self.sampleRandom!=-1:
if len(item['all_candidate_labels']) < self.sampleRandom:
# Duplicate entries were deleted, manually add some duplicates :)
item['all_candidate_labels'] = np.concatenate([item['all_candidate_labels'], item['all_candidate_labels'][len(item['all_candidate_labels'])-self.sampleRandom:]])
item['all_candidate_labels'] = item['all_candidate_labels'][:self.sampleRandom]
l1 = len(item['all_candidate_labels'])
if self.ignored_labels:
# Remove the ignored labels
# After removing make sure the size is equal to l1, by randomly duplicating elements
ignore_list = {self.label_to_id[x] for x in self.ignored_labels}
if len(ignore_list) > 0:
item['all_candidate_labels'] = set(item['all_candidate_labels'].tolist()).difference(ignore_list)
item['all_candidate_labels'] = sorted(list(item['all_candidate_labels']))
if len(item['all_candidate_labels']) < l:
item['all_candidate_labels'] += item['all_candidate_labels'][:l - len(item['all_candidate_labels'])]
item['all_candidate_labels'] = np.array(item['all_candidate_labels'])
# l1 = np.array(item['label']).sum()
item['label'] = np.array(item['label'])[item['all_candidate_labels']]
# print(f'{item["label"].sum()} / {l1}')
item['label_desc_ids'] = [np.random.randint(0, self.class_descs_len[self.id_to_label[label_key]]) for label_key in item['all_candidate_labels']]
if self.tok_format ==1:
item['desc_input_ids'] = [self.class_descs_tokenized['input_ids'][label_key][item['label_desc_ids'][i]].astype(np.int32) for i, label_key in enumerate(item['all_candidate_labels'])]
item['desc_attention_mask'] = [self.class_descs_tokenized['attention_mask'][label_key][item['label_desc_ids'][i]].astype(np.int32) for i, label_key in enumerate(item['all_candidate_labels'])]
else:
item['desc_input_ids'] = [self.class_descs_tokenized[self.id_to_label[label_key]][0][item['label_desc_ids'][i]] for i, label_key in enumerate(item['all_candidate_labels'])]
item['desc_attention_mask'] = [self.class_descs_tokenized[self.id_to_label[label_key]][1][item['label_desc_ids'][i]] for i, label_key in enumerate(item['all_candidate_labels'])]
pos_pts = item['label'].nonzero()[0]
# if len(pos_pts) > 0:
# print(idx, item['desc_input_ids'][pos_pts[0]])
if self.coil_cluster_map:
map_to_cluster = lambda x : self.coil_cluster_map[str(x)]
if isinstance(item['input_ids'], list):
item['clustered_input_ids'] = [self.coil_cluster_map[str(x)] for x in item['input_ids']]
else:
item['clustered_input_ids'] = item['input_ids'].vectorize(map_to_cluster)
item['clustered_desc_ids'] = [[self.coil_cluster_map[str(x)] for x in xx] for xx in item['desc_input_ids']]
return item
def __getitem__(self, idx):
item = self.input_dataset.__getitem__(idx)
if self.data_args.large_dset:
return self.get_item_for_large_dset(idx, item)
# Iterate over all the labels of input_dataset
# and add random label_description to the item in the same order
if self.ignored_labels:
ignored_labels = self.ignored_labels[idx]
if self.sampleRandom != -1:
# Create all_candidate_labels
if self.seen_labels is None:
labels_new = item['label']
else:
labels_new = np.array(item['label'])[self.seen_labels]
if self.useBMShort:
# Instead of choosing randomly, choose 60% topmost most from the shortlist
# Next sample the remaining random entries
if self.seen_labels is not None:
# from pdb import set_trace as bp
# bp()
all_candidate_labels = [self.seen_labels.tolist().index(self.label_to_id[x]) for x in self.shortlists[idx] if self.label_to_id[x] in self.seen_labels][:int(0.8*self.sampleRandom)]
# print(f'BM got: {len(all_candidate_labels)}')
# Choose the remaining randomly from set of seen_labels - all_candidates
all_candidate_labels += np.random.choice(list({x for x in range(len(self.seen_labels))}.difference(set(all_candidate_labels))), self.sampleRandom - len(all_candidate_labels), replace = False).tolist()
else:
all_candidate_labels = np.random.choice(range(len(labels_new)) , self.sampleRandom , replace = False)
# prepend positive labels
pos_labels = np.where(np.array(labels_new) == 1)[0]
all_candidate_labels = np.concatenate([pos_labels, all_candidate_labels])
# Remove duplicates
all_candidate_labels = np.unique(all_candidate_labels)[:self.sampleRandom]
if len(pos_labels) < self.cl_min_positive_descs:
addn_pos_labels = np.random.choice(pos_labels, self.cl_min_positive_descs - len(pos_labels))
all_candidate_labels = np.concatenate([addn_pos_labels, all_candidate_labels])[:self.sampleRandom]
np.random.shuffle(all_candidate_labels)
item['all_candidate_labels'] = all_candidate_labels
# NOTE: ids will be according to seen labels
# Now update the labels based on all_candidate_labels
# print('Getting Data')
if self.semsup:
# print(len(item['label']))
if 'all_candidate_labels' not in item:
item['label_desc_ids'] = [np.random.randint(0, self.class_descs_len[self.id_to_label[label_key]]) for label_key in range(len(item['label']))]
if self.return_desc_embeddings:
item['desc_input_ids'] = [self.class_descs_tokenized[self.id_to_label[label_key]][0][item['label_desc_ids'][label_key]] for label_key in range(len(item['label']))]
item['desc_attention_mask'] = [self.class_descs_tokenized[self.id_to_label[label_key]][1][item['label_desc_ids'][label_key]] for label_key in range(len(item['label']))]
if self.use_precomputed_embeddings:
new_indices = [i*5 + x for i,x in enumerate(item['label_desc_ids'])]
# item['desc_inputs_embeds'] = [self.computed_desc_inputs_embeds[ item['label_desc_ids'][label_key], self.label_to_id[self.id_to_label[label_key]] ] for label_key in range(len(item['label']))]
# item['desc_inputs_embeds'] = self.computed_desc_inputs_embeds[ item['label_desc_ids'][label_key], self.label_to_id[self.id_to_label[label_key]] for label_key in range(len(item['label']))]
if self.seen_labels is not None:
new_indices = [x for i, x in enumerate(new_indices) if i in self.seen_labels]
item['desc_inputs_embeds'] = self.computed_desc_inputs_embeds[new_indices]
item['all_candidate_labels'] = range(len(item['label']))
if self.seen_labels is not None:
item['label_desc_ids'] = (np.array(item['label_desc_ids'])[self.seen_labels]).tolist()
if self.return_desc_embeddings:
item['desc_input_ids'] = (np.array(item['desc_input_ids']))[self.seen_labels].tolist()
item['desc_attention_mask'] = (np.array(item['desc_attention_mask']))[self.seen_labels].tolist()
# if self.use_precomputed_embeddings:
# item['desc_inputs_embeds'] = torch.tensor(item['desc_inputs_embeds'])[self.seen_labels]
item['all_candidate_labels'] = (np.array(item['all_candidate_labels']))[self.seen_labels].tolist()
item['label'] = (np.array(item['label']))[self.seen_labels].tolist()
elif 'all_candidate_labels' in item:
# print('Computing')
st = time.time()
item['label_desc_ids'] = [np.random.randint(0, self.class_descs_len[self.id_to_label[label_key]]) for label_key in range(len(item['label']))]
if self.seen_labels is not None:
if self.return_desc_embeddings:
item['desc_input_ids'] = [self.class_descs_tokenized[self.id_to_label[label_key]][0][item['label_desc_ids'][label_key]] for label_key in range(len(item['label']))]
item['desc_attention_mask'] = [self.class_descs_tokenized[self.id_to_label[label_key]][1][item['label_desc_ids'][label_key]] for label_key in range(len(item['label']))]
if self.use_precomputed_embeddings:
new_indices = [i*5 + x for i,x in enumerate(item['label_desc_ids'])]
# Now of the 4271 labels, chose only the seen labels
new_indices = [x for i, x in enumerate(new_indices) if i in self.seen_labels]
# Now choose all_candidate labels
# print(len(new_indices))
new_indices = [new_indices[x] for x in sorted(item['all_candidate_labels'])]
# print(len(new_indices), len(item['all_candidate_labels']))
# if len(new_indices)!=1500:
# print('Some Issue Over Here')
item['desc_inputs_embeds'] = self.computed_desc_inputs_embeds[new_indices]
# [self.computed_desc_inputs_embeds[ item['label_desc_ids'][label_key], self.label_to_id[self.id_to_label[label_key]] ] for label_key in range(len(item['label']))]
# print('Mid Calculation Done', item['desc_inputs_embeds'].shape, time.time() - st)
item['label_desc_ids'] = np.array(item['label_desc_ids'])[self.seen_labels].tolist()
item['label'] = np.array(item['label'])[self.seen_labels].tolist()
item['label'] = np.array(item['label'])[all_candidate_labels].tolist()
item['desc_input_ids'] = np.array(item['desc_input_ids'])[self.seen_labels][item['all_candidate_labels']].tolist()
item['desc_attention_mask'] = np.array(item['desc_attention_mask'])[self.seen_labels][item['all_candidate_labels']].tolist()
# if self.use_precomputed_embeddings:
# print('Starting Final Compute', time.time() - st)
# item['desc_inputs_embeds'] = item['desc_inputs_embeds'][self.seen_labels][item['all_candidate_labels']]#.tolist()
# print('Computed', type(item['desc_inputs_embeds']), type(item['desc_inputs_embeds'][0]), time.time() - st)
else:
item['label'] = np.array(item['label'])[all_candidate_labels].tolist()
if self.return_desc_embeddings:
item['desc_input_ids'] = [self.class_descs_tokenized[self.id_to_label[label_key]][0][item['label_desc_ids'][label_key]] for label_key in np.array(item['all_candidate_labels'])]
item['desc_attention_mask'] = [self.class_descs_tokenized[self.id_to_label[label_key]][1][item['label_desc_ids'][label_key]] for label_key in np.array(item['all_candidate_labels'])]
if self.use_precomputed_embeddings:
item['desc_inputs_embeds'] = [self.computed_desc_inputs_embeds[ item['label_desc_ids'][label_key], self.label_to_id[self.id_to_label[label_key]] ] for label_key in np.array(item['all_candidate_labels'])]
if self.ignored_labels:
if self.sampleRandom != -1 and self.seen_labels is not None:
ignored_labels = [self.seen_labels.tolist().index(self.label_to_id[x]) for x in self.ignored_labels[idx]]
item['all_candidate_labels'] = item['all_candidate_labels'].tolist()
else:
ignored_labels = [self.label_to_id[x] for x in self.ignored_labels[idx]]
remove_pts = [item['all_candidate_labels'].index(x) for x in ignored_labels if x in item['all_candidate_labels']]
keep_pts = [x for x in range(len(item['all_candidate_labels'])) if x not in remove_pts]
# Keep pts can be less than sampleRandom. Manually pad after choosing some values
# print('Before Len', len(keep_pts), len(item['desc_input_ids']))
if self.sampleRandom!=-1 and len(keep_pts) < self.sampleRandom:
# print('Inside the choice function')
keep_pts += np.random.choice(keep_pts, self.sampleRandom - len(keep_pts), replace = False).tolist()
# print('After Len', len(keep_pts), len(item['desc_input_ids']))
# print(len(keep_pts), max(keep_pts))
item['desc_input_ids'] = np.array(item['desc_input_ids'])[keep_pts].tolist()
item['desc_attention_mask'] = np.array(item['desc_attention_mask'])[keep_pts].tolist()
if 'desc_inputs_embeds' in item:
item['desc_inputs_embeds'] = np.array(item['desc_inputs_embeds'])[keep_pts].tolist()
item['label_desc_ids'] = np.array(item['label_desc_ids'])[keep_pts].tolist()
item['label'] = np.array(item['label'])[keep_pts].tolist()
if self.coil_cluster_map:
map_to_cluster = lambda x : self.coil_cluster_map[str(x)]
if isinstance(item['input_ids'], list):
item['clustered_input_ids'] = [self.coil_cluster_map[str(x)] for x in item['input_ids']]
else:
item['clustered_input_ids'] = item['input_ids'].vectorize(map_to_cluster)
item['clustered_desc_ids'] = [[self.coil_cluster_map[str(x)] for x in xx] for xx in item['desc_input_ids']]
return item
else:
return item
|