MaxwellMeyer commited on
Commit
f782800
·
verified ·
1 Parent(s): ca496cc

Upload 7 files

Browse files
Files changed (7) hide show
  1. README.md +4 -5
  2. app.py +116 -0
  3. ben_base.py +1316 -0
  4. config.json +6 -0
  5. gitattributes +35 -0
  6. image.jpg +0 -0
  7. requirements.txt +12 -0
README.md CHANGED
@@ -1,13 +1,12 @@
1
  ---
2
  title: BEN2
3
- emoji: 😻
4
- colorFrom: green
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 5.13.2
8
  app_file: app.py
9
  pinned: false
10
- license: mit
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: BEN2
3
+ emoji: 🚀
4
+ colorFrom: purple
5
+ colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 5.13.1
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import gradio as gr
3
+ import torch
4
+ import os
5
+ import sys
6
+ from loadimg import load_img
7
+ from ben_base import BEN_Base
8
+ import random
9
+ import huggingface_hub
10
+ import numpy as np
11
+
12
+ def set_random_seed(seed):
13
+ random.seed(seed)
14
+ np.random.seed(seed)
15
+ torch.manual_seed(seed)
16
+ torch.cuda.manual_seed(seed)
17
+ torch.cuda.manual_seed_all(seed)
18
+ torch.backends.cudnn.deterministic = True
19
+ torch.backends.cudnn.benchmark = False
20
+
21
+ set_random_seed(9)
22
+ torch.set_float32_matmul_precision("high")
23
+
24
+ model = BEN_Base()
25
+ # Download the model file from Hugging Face Hub
26
+ model_path = huggingface_hub.hf_hub_download(
27
+ repo_id="PramaLLC/BEN2",
28
+ filename="BEN2_Base.pth"
29
+ )
30
+
31
+ # Check if CUDA is available
32
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
33
+ print(f"Using device: {device}")
34
+
35
+ # Load model
36
+ model.loadcheckpoints(model_path)
37
+ model.to(device)
38
+ model.eval()
39
+
40
+ output_folder = 'output_images'
41
+ if not os.path.exists(output_folder):
42
+ os.makedirs(output_folder)
43
+
44
+ def fn(image):
45
+ im = load_img(image, output_type="pil")
46
+ im = im.convert("RGB")
47
+ result_image = process(im)
48
+ image_path = os.path.join(output_folder, "foreground.png")
49
+ result_image.save(image_path)
50
+ return result_image, image_path
51
+
52
+
53
+ @spaces.GPU
54
+ def process_video(video_path):
55
+ output_path = "./foreground.mp4"
56
+
57
+ # print(type(video_path))
58
+ # print(video_path)
59
+
60
+ model.segment_video(video_path) # This will save to ./foreground.mp4
61
+ return output_path
62
+
63
+ @spaces.GPU
64
+ def process(image):
65
+ foreground = model.inference(image)
66
+ print(type(foreground))
67
+ return foreground
68
+
69
+ def process_file(f):
70
+ name_path = f.rsplit(".",1)[0]+".png"
71
+ im = load_img(f, output_type="pil")
72
+ im = im.convert("RGB")
73
+ transparent = process(im)
74
+ transparent.save(name_path)
75
+ return name_path
76
+
77
+ # Interface components
78
+ image = gr.Image(label="Upload an image")
79
+ video = gr.Video(label="Upload a video")
80
+
81
+ current_dir = os.path.dirname(os.path.abspath(__file__))
82
+ image_path = os.path.join(current_dir, "image.jpg")
83
+ examples = load_img(image_path, output_type="pil")
84
+
85
+ # Image processing tab
86
+ tab1 = gr.Interface(
87
+ fn,
88
+ inputs=image,
89
+ outputs=[
90
+ gr.Image(label="Result Foreground"),
91
+ gr.File(label="Download PNG")
92
+ ],
93
+ examples=[examples],
94
+ api_name="image"
95
+ )
96
+
97
+ # Video processing tab
98
+ tab2 = gr.Interface(
99
+ process_video,
100
+ inputs=video,
101
+ outputs=gr.Video(label="Result Video"),
102
+ api_name="video",
103
+ title="Video Processing (experimental)",
104
+ description="Note: For ZeroGPU timeout, videos are limited to processing the first 100 frames only."
105
+ )
106
+
107
+ # Combined interface
108
+ demo = gr.TabbedInterface(
109
+ [tab1, tab2],
110
+ ["Image Processing", "Video Processing"],
111
+ title="BEN2 for background removal. Download the image/video for higher quality foreground.",
112
+ # description="Note: Video processing is limited to the first 100 frames for performance reasons."
113
+ )
114
+
115
+ if __name__ == "__main__":
116
+ demo.launch(show_error=True)
ben_base.py ADDED
@@ -0,0 +1,1316 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from einops import rearrange
7
+ import torch.utils.checkpoint as checkpoint
8
+ import numpy as np
9
+ from timm.layers import DropPath, to_2tuple, trunc_normal_
10
+ from PIL import Image, ImageOps
11
+ from torchvision import transforms
12
+ import numpy as np
13
+ import random
14
+ import cv2
15
+ import os
16
+ import subprocess
17
+ import time
18
+ import tempfile
19
+
20
+
21
+
22
+
23
+ def set_random_seed(seed):
24
+ random.seed(seed)
25
+ np.random.seed(seed)
26
+ torch.manual_seed(seed)
27
+ torch.cuda.manual_seed(seed)
28
+ torch.cuda.manual_seed_all(seed)
29
+ torch.backends.cudnn.deterministic = True
30
+ torch.backends.cudnn.benchmark = False
31
+ set_random_seed(9)
32
+
33
+
34
+ torch.set_float32_matmul_precision('highest')
35
+
36
+
37
+
38
+ class Mlp(nn.Module):
39
+ """ Multilayer perceptron."""
40
+
41
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
42
+ super().__init__()
43
+ out_features = out_features or in_features
44
+ hidden_features = hidden_features or in_features
45
+ self.fc1 = nn.Linear(in_features, hidden_features)
46
+ self.act = act_layer()
47
+ self.fc2 = nn.Linear(hidden_features, out_features)
48
+ self.drop = nn.Dropout(drop)
49
+
50
+ def forward(self, x):
51
+ x = self.fc1(x)
52
+ x = self.act(x)
53
+ x = self.drop(x)
54
+ x = self.fc2(x)
55
+ x = self.drop(x)
56
+ return x
57
+
58
+
59
+ def window_partition(x, window_size):
60
+ """
61
+ Args:
62
+ x: (B, H, W, C)
63
+ window_size (int): window size
64
+ Returns:
65
+ windows: (num_windows*B, window_size, window_size, C)
66
+ """
67
+ B, H, W, C = x.shape
68
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
69
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
70
+ return windows
71
+
72
+
73
+ def window_reverse(windows, window_size, H, W):
74
+ """
75
+ Args:
76
+ windows: (num_windows*B, window_size, window_size, C)
77
+ window_size (int): Window size
78
+ H (int): Height of image
79
+ W (int): Width of image
80
+ Returns:
81
+ x: (B, H, W, C)
82
+ """
83
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
84
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
85
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
86
+ return x
87
+
88
+
89
+ class WindowAttention(nn.Module):
90
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
91
+ It supports both of shifted and non-shifted window.
92
+ Args:
93
+ dim (int): Number of input channels.
94
+ window_size (tuple[int]): The height and width of the window.
95
+ num_heads (int): Number of attention heads.
96
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
97
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
98
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
99
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
100
+ """
101
+
102
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
103
+
104
+ super().__init__()
105
+ self.dim = dim
106
+ self.window_size = window_size # Wh, Ww
107
+ self.num_heads = num_heads
108
+ head_dim = dim // num_heads
109
+ self.scale = qk_scale or head_dim ** -0.5
110
+
111
+ # define a parameter table of relative position bias
112
+ self.relative_position_bias_table = nn.Parameter(
113
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
114
+
115
+ # get pair-wise relative position index for each token inside the window
116
+ coords_h = torch.arange(self.window_size[0])
117
+ coords_w = torch.arange(self.window_size[1])
118
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
119
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
120
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
121
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
122
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
123
+ relative_coords[:, :, 1] += self.window_size[1] - 1
124
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
125
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
126
+ self.register_buffer("relative_position_index", relative_position_index)
127
+
128
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
129
+ self.attn_drop = nn.Dropout(attn_drop)
130
+ self.proj = nn.Linear(dim, dim)
131
+ self.proj_drop = nn.Dropout(proj_drop)
132
+
133
+ trunc_normal_(self.relative_position_bias_table, std=.02)
134
+ self.softmax = nn.Softmax(dim=-1)
135
+
136
+ def forward(self, x, mask=None):
137
+ """ Forward function.
138
+ Args:
139
+ x: input features with shape of (num_windows*B, N, C)
140
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
141
+ """
142
+ B_, N, C = x.shape
143
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
144
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
145
+
146
+ q = q * self.scale
147
+ attn = (q @ k.transpose(-2, -1))
148
+
149
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
150
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
151
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
152
+ attn = attn + relative_position_bias.unsqueeze(0)
153
+
154
+ if mask is not None:
155
+ nW = mask.shape[0]
156
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
157
+ attn = attn.view(-1, self.num_heads, N, N)
158
+ attn = self.softmax(attn)
159
+ else:
160
+ attn = self.softmax(attn)
161
+
162
+ attn = self.attn_drop(attn)
163
+
164
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
165
+ x = self.proj(x)
166
+ x = self.proj_drop(x)
167
+ return x
168
+
169
+
170
+ class SwinTransformerBlock(nn.Module):
171
+ """ Swin Transformer Block.
172
+ Args:
173
+ dim (int): Number of input channels.
174
+ num_heads (int): Number of attention heads.
175
+ window_size (int): Window size.
176
+ shift_size (int): Shift size for SW-MSA.
177
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
178
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
179
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
180
+ drop (float, optional): Dropout rate. Default: 0.0
181
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
182
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
183
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
184
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
185
+ """
186
+
187
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
188
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
189
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
190
+ super().__init__()
191
+ self.dim = dim
192
+ self.num_heads = num_heads
193
+ self.window_size = window_size
194
+ self.shift_size = shift_size
195
+ self.mlp_ratio = mlp_ratio
196
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
197
+
198
+ self.norm1 = norm_layer(dim)
199
+ self.attn = WindowAttention(
200
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
201
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
202
+
203
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
204
+ self.norm2 = norm_layer(dim)
205
+ mlp_hidden_dim = int(dim * mlp_ratio)
206
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
207
+
208
+ self.H = None
209
+ self.W = None
210
+
211
+ def forward(self, x, mask_matrix):
212
+ """ Forward function.
213
+ Args:
214
+ x: Input feature, tensor size (B, H*W, C).
215
+ H, W: Spatial resolution of the input feature.
216
+ mask_matrix: Attention mask for cyclic shift.
217
+ """
218
+ B, L, C = x.shape
219
+ H, W = self.H, self.W
220
+ assert L == H * W, "input feature has wrong size"
221
+
222
+ shortcut = x
223
+ x = self.norm1(x)
224
+ x = x.view(B, H, W, C)
225
+
226
+ # pad feature maps to multiples of window size
227
+ pad_l = pad_t = 0
228
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
229
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
230
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
231
+ _, Hp, Wp, _ = x.shape
232
+
233
+ # cyclic shift
234
+ if self.shift_size > 0:
235
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
236
+ attn_mask = mask_matrix
237
+ else:
238
+ shifted_x = x
239
+ attn_mask = None
240
+
241
+ # partition windows
242
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
243
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
244
+
245
+ # W-MSA/SW-MSA
246
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
247
+
248
+ # merge windows
249
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
250
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
251
+
252
+ # reverse cyclic shift
253
+ if self.shift_size > 0:
254
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
255
+ else:
256
+ x = shifted_x
257
+
258
+ if pad_r > 0 or pad_b > 0:
259
+ x = x[:, :H, :W, :].contiguous()
260
+
261
+ x = x.view(B, H * W, C)
262
+
263
+ # FFN
264
+ x = shortcut + self.drop_path(x)
265
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
266
+
267
+ return x
268
+
269
+
270
+ class PatchMerging(nn.Module):
271
+ """ Patch Merging Layer
272
+ Args:
273
+ dim (int): Number of input channels.
274
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
275
+ """
276
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
277
+ super().__init__()
278
+ self.dim = dim
279
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
280
+ self.norm = norm_layer(4 * dim)
281
+
282
+ def forward(self, x, H, W):
283
+ """ Forward function.
284
+ Args:
285
+ x: Input feature, tensor size (B, H*W, C).
286
+ H, W: Spatial resolution of the input feature.
287
+ """
288
+ B, L, C = x.shape
289
+ assert L == H * W, "input feature has wrong size"
290
+
291
+ x = x.view(B, H, W, C)
292
+
293
+ # padding
294
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
295
+ if pad_input:
296
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
297
+
298
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
299
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
300
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
301
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
302
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
303
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
304
+
305
+ x = self.norm(x)
306
+ x = self.reduction(x)
307
+
308
+ return x
309
+
310
+
311
+ class BasicLayer(nn.Module):
312
+ """ A basic Swin Transformer layer for one stage.
313
+ Args:
314
+ dim (int): Number of feature channels
315
+ depth (int): Depths of this stage.
316
+ num_heads (int): Number of attention head.
317
+ window_size (int): Local window size. Default: 7.
318
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
319
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
320
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
321
+ drop (float, optional): Dropout rate. Default: 0.0
322
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
323
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
324
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
325
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
326
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
327
+ """
328
+
329
+ def __init__(self,
330
+ dim,
331
+ depth,
332
+ num_heads,
333
+ window_size=7,
334
+ mlp_ratio=4.,
335
+ qkv_bias=True,
336
+ qk_scale=None,
337
+ drop=0.,
338
+ attn_drop=0.,
339
+ drop_path=0.,
340
+ norm_layer=nn.LayerNorm,
341
+ downsample=None,
342
+ use_checkpoint=False):
343
+ super().__init__()
344
+ self.window_size = window_size
345
+ self.shift_size = window_size // 2
346
+ self.depth = depth
347
+ self.use_checkpoint = use_checkpoint
348
+
349
+ # build blocks
350
+ self.blocks = nn.ModuleList([
351
+ SwinTransformerBlock(
352
+ dim=dim,
353
+ num_heads=num_heads,
354
+ window_size=window_size,
355
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
356
+ mlp_ratio=mlp_ratio,
357
+ qkv_bias=qkv_bias,
358
+ qk_scale=qk_scale,
359
+ drop=drop,
360
+ attn_drop=attn_drop,
361
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
362
+ norm_layer=norm_layer)
363
+ for i in range(depth)])
364
+
365
+ # patch merging layer
366
+ if downsample is not None:
367
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
368
+ else:
369
+ self.downsample = None
370
+
371
+ def forward(self, x, H, W):
372
+ """ Forward function.
373
+ Args:
374
+ x: Input feature, tensor size (B, H*W, C).
375
+ H, W: Spatial resolution of the input feature.
376
+ """
377
+
378
+ # calculate attention mask for SW-MSA
379
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
380
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
381
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
382
+ h_slices = (slice(0, -self.window_size),
383
+ slice(-self.window_size, -self.shift_size),
384
+ slice(-self.shift_size, None))
385
+ w_slices = (slice(0, -self.window_size),
386
+ slice(-self.window_size, -self.shift_size),
387
+ slice(-self.shift_size, None))
388
+ cnt = 0
389
+ for h in h_slices:
390
+ for w in w_slices:
391
+ img_mask[:, h, w, :] = cnt
392
+ cnt += 1
393
+
394
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
395
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
396
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
397
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
398
+
399
+ for blk in self.blocks:
400
+ blk.H, blk.W = H, W
401
+ if self.use_checkpoint:
402
+ x = checkpoint.checkpoint(blk, x, attn_mask)
403
+ else:
404
+ x = blk(x, attn_mask)
405
+ if self.downsample is not None:
406
+ x_down = self.downsample(x, H, W)
407
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
408
+ return x, H, W, x_down, Wh, Ww
409
+ else:
410
+ return x, H, W, x, H, W
411
+
412
+
413
+ class PatchEmbed(nn.Module):
414
+ """ Image to Patch Embedding
415
+ Args:
416
+ patch_size (int): Patch token size. Default: 4.
417
+ in_chans (int): Number of input image channels. Default: 3.
418
+ embed_dim (int): Number of linear projection output channels. Default: 96.
419
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
420
+ """
421
+
422
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
423
+ super().__init__()
424
+ patch_size = to_2tuple(patch_size)
425
+ self.patch_size = patch_size
426
+
427
+ self.in_chans = in_chans
428
+ self.embed_dim = embed_dim
429
+
430
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
431
+ if norm_layer is not None:
432
+ self.norm = norm_layer(embed_dim)
433
+ else:
434
+ self.norm = None
435
+
436
+ def forward(self, x):
437
+ """Forward function."""
438
+ # padding
439
+ _, _, H, W = x.size()
440
+ if W % self.patch_size[1] != 0:
441
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
442
+ if H % self.patch_size[0] != 0:
443
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
444
+
445
+ x = self.proj(x) # B C Wh Ww
446
+ if self.norm is not None:
447
+ Wh, Ww = x.size(2), x.size(3)
448
+ x = x.flatten(2).transpose(1, 2)
449
+ x = self.norm(x)
450
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
451
+
452
+ return x
453
+
454
+
455
+ class SwinTransformer(nn.Module):
456
+ """ Swin Transformer backbone.
457
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
458
+ https://arxiv.org/pdf/2103.14030
459
+ Args:
460
+ pretrain_img_size (int): Input image size for training the pretrained model,
461
+ used in absolute postion embedding. Default 224.
462
+ patch_size (int | tuple(int)): Patch size. Default: 4.
463
+ in_chans (int): Number of input image channels. Default: 3.
464
+ embed_dim (int): Number of linear projection output channels. Default: 96.
465
+ depths (tuple[int]): Depths of each Swin Transformer stage.
466
+ num_heads (tuple[int]): Number of attention head of each stage.
467
+ window_size (int): Window size. Default: 7.
468
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
469
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
470
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
471
+ drop_rate (float): Dropout rate.
472
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
473
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
474
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
475
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
476
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
477
+ out_indices (Sequence[int]): Output from which stages.
478
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
479
+ -1 means not freezing any parameters.
480
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
481
+ """
482
+
483
+ def __init__(self,
484
+ pretrain_img_size=224,
485
+ patch_size=4,
486
+ in_chans=3,
487
+ embed_dim=96,
488
+ depths=[2, 2, 6, 2],
489
+ num_heads=[3, 6, 12, 24],
490
+ window_size=7,
491
+ mlp_ratio=4.,
492
+ qkv_bias=True,
493
+ qk_scale=None,
494
+ drop_rate=0.,
495
+ attn_drop_rate=0.,
496
+ drop_path_rate=0.2,
497
+ norm_layer=nn.LayerNorm,
498
+ ape=False,
499
+ patch_norm=True,
500
+ out_indices=(0, 1, 2, 3),
501
+ frozen_stages=-1,
502
+ use_checkpoint=False):
503
+ super().__init__()
504
+
505
+ self.pretrain_img_size = pretrain_img_size
506
+ self.num_layers = len(depths)
507
+ self.embed_dim = embed_dim
508
+ self.ape = ape
509
+ self.patch_norm = patch_norm
510
+ self.out_indices = out_indices
511
+ self.frozen_stages = frozen_stages
512
+
513
+ # split image into non-overlapping patches
514
+ self.patch_embed = PatchEmbed(
515
+ patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
516
+ norm_layer=norm_layer if self.patch_norm else None)
517
+
518
+ # absolute position embedding
519
+ if self.ape:
520
+ pretrain_img_size = to_2tuple(pretrain_img_size)
521
+ patch_size = to_2tuple(patch_size)
522
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
523
+
524
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
525
+ trunc_normal_(self.absolute_pos_embed, std=.02)
526
+
527
+ self.pos_drop = nn.Dropout(p=drop_rate)
528
+
529
+ # stochastic depth
530
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
531
+
532
+ # build layers
533
+ self.layers = nn.ModuleList()
534
+ for i_layer in range(self.num_layers):
535
+ layer = BasicLayer(
536
+ dim=int(embed_dim * 2 ** i_layer),
537
+ depth=depths[i_layer],
538
+ num_heads=num_heads[i_layer],
539
+ window_size=window_size,
540
+ mlp_ratio=mlp_ratio,
541
+ qkv_bias=qkv_bias,
542
+ qk_scale=qk_scale,
543
+ drop=drop_rate,
544
+ attn_drop=attn_drop_rate,
545
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
546
+ norm_layer=norm_layer,
547
+ downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
548
+ use_checkpoint=use_checkpoint)
549
+ self.layers.append(layer)
550
+
551
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
552
+ self.num_features = num_features
553
+
554
+ # add a norm layer for each output
555
+ for i_layer in out_indices:
556
+ layer = norm_layer(num_features[i_layer])
557
+ layer_name = f'norm{i_layer}'
558
+ self.add_module(layer_name, layer)
559
+
560
+ self._freeze_stages()
561
+
562
+ def _freeze_stages(self):
563
+ if self.frozen_stages >= 0:
564
+ self.patch_embed.eval()
565
+ for param in self.patch_embed.parameters():
566
+ param.requires_grad = False
567
+
568
+ if self.frozen_stages >= 1 and self.ape:
569
+ self.absolute_pos_embed.requires_grad = False
570
+
571
+ if self.frozen_stages >= 2:
572
+ self.pos_drop.eval()
573
+ for i in range(0, self.frozen_stages - 1):
574
+ m = self.layers[i]
575
+ m.eval()
576
+ for param in m.parameters():
577
+ param.requires_grad = False
578
+
579
+
580
+ def forward(self, x):
581
+
582
+ x = self.patch_embed(x)
583
+
584
+ Wh, Ww = x.size(2), x.size(3)
585
+ if self.ape:
586
+ # interpolate the position embedding to the corresponding size
587
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
588
+ x = (x + absolute_pos_embed) # B Wh*Ww C
589
+
590
+ outs = [x.contiguous()]
591
+ x = x.flatten(2).transpose(1, 2)
592
+ x = self.pos_drop(x)
593
+
594
+
595
+ for i in range(self.num_layers):
596
+ layer = self.layers[i]
597
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
598
+
599
+
600
+ if i in self.out_indices:
601
+ norm_layer = getattr(self, f'norm{i}')
602
+ x_out = norm_layer(x_out)
603
+
604
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
605
+ outs.append(out)
606
+
607
+
608
+
609
+ return tuple(outs)
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+
618
+ def get_activation_fn(activation):
619
+ """Return an activation function given a string"""
620
+ if activation == "gelu":
621
+ return F.gelu
622
+
623
+ raise RuntimeError(F"activation should be gelu, not {activation}.")
624
+
625
+
626
+ def make_cbr(in_dim, out_dim):
627
+ return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
628
+
629
+
630
+ def make_cbg(in_dim, out_dim):
631
+ return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), nn.InstanceNorm2d(out_dim), nn.GELU())
632
+
633
+
634
+ def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
635
+ return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
636
+
637
+
638
+ def resize_as(x, y, interpolation='bilinear'):
639
+ return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
640
+
641
+
642
+ def image2patches(x):
643
+ """b c (hg h) (wg w) -> (hg wg b) c h w"""
644
+ x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2 )
645
+ return x
646
+
647
+
648
+ def patches2image(x):
649
+ """(hg wg b) c h w -> b c (hg h) (wg w)"""
650
+ x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
651
+ return x
652
+
653
+
654
+
655
+ class PositionEmbeddingSine:
656
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
657
+ super().__init__()
658
+ self.num_pos_feats = num_pos_feats
659
+ self.temperature = temperature
660
+ self.normalize = normalize
661
+ if scale is not None and normalize is False:
662
+ raise ValueError("normalize should be True if scale is passed")
663
+ if scale is None:
664
+ scale = 2 * math.pi
665
+ self.scale = scale
666
+ self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
667
+
668
+ def __call__(self, b, h, w):
669
+ device = self.dim_t.device
670
+ mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
671
+ assert mask is not None
672
+ not_mask = ~mask
673
+ y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
674
+ x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
675
+ if self.normalize:
676
+ eps = 1e-6
677
+ y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
678
+ x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
679
+
680
+ dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
681
+ pos_x = x_embed[:, :, :, None] / dim_t
682
+ pos_y = y_embed[:, :, :, None] / dim_t
683
+
684
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
685
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
686
+
687
+ return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
688
+
689
+
690
+
691
+ class PositionEmbeddingSine:
692
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
693
+ super().__init__()
694
+ self.num_pos_feats = num_pos_feats
695
+ self.temperature = temperature
696
+ self.normalize = normalize
697
+ if scale is not None and normalize is False:
698
+ raise ValueError("normalize should be True if scale is passed")
699
+ if scale is None:
700
+ scale = 2 * math.pi
701
+ self.scale = scale
702
+ self.dim_t = torch.arange(0, self.num_pos_feats, dtype=torch.float32)
703
+
704
+ def __call__(self, b, h, w):
705
+ device = self.dim_t.device
706
+ mask = torch.zeros([b, h, w], dtype=torch.bool, device=device)
707
+ assert mask is not None
708
+ not_mask = ~mask
709
+ y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
710
+ x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
711
+ if self.normalize:
712
+ eps = 1e-6
713
+ y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale
714
+ x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale
715
+
716
+ dim_t = self.temperature ** (2 * (self.dim_t.to(device) // 2) / self.num_pos_feats)
717
+ pos_x = x_embed[:, :, :, None] / dim_t
718
+ pos_y = y_embed[:, :, :, None] / dim_t
719
+
720
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
721
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
722
+
723
+ return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
724
+
725
+
726
+ class MCLM(nn.Module):
727
+ def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
728
+ super(MCLM, self).__init__()
729
+ self.attention = nn.ModuleList([
730
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
731
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
732
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
733
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
734
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
735
+ ])
736
+
737
+ self.linear1 = nn.Linear(d_model, d_model * 2)
738
+ self.linear2 = nn.Linear(d_model * 2, d_model)
739
+ self.linear3 = nn.Linear(d_model, d_model * 2)
740
+ self.linear4 = nn.Linear(d_model * 2, d_model)
741
+ self.norm1 = nn.LayerNorm(d_model)
742
+ self.norm2 = nn.LayerNorm(d_model)
743
+ self.dropout = nn.Dropout(0.1)
744
+ self.dropout1 = nn.Dropout(0.1)
745
+ self.dropout2 = nn.Dropout(0.1)
746
+ self.activation = get_activation_fn('gelu')
747
+ self.pool_ratios = pool_ratios
748
+ self.p_poses = []
749
+ self.g_pos = None
750
+ self.positional_encoding = PositionEmbeddingSine(num_pos_feats=d_model // 2, normalize=True)
751
+
752
+ def forward(self, l, g):
753
+ """
754
+ l: 4,c,h,w
755
+ g: 1,c,h,w
756
+ """
757
+ self.p_poses = []
758
+ self.g_pos = None
759
+ b, c, h, w = l.size()
760
+ # 4,c,h,w -> 1,c,2h,2w
761
+ concated_locs = rearrange(l, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
762
+
763
+ pools = []
764
+ for pool_ratio in self.pool_ratios:
765
+ # b,c,h,w
766
+ tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
767
+ pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
768
+ pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
769
+ if self.g_pos is None:
770
+ pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], pool.shape[3])
771
+ pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
772
+ self.p_poses.append(pos_emb)
773
+ pools = torch.cat(pools, 0)
774
+ if self.g_pos is None:
775
+ self.p_poses = torch.cat(self.p_poses, dim=0)
776
+ pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
777
+ self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
778
+
779
+ device = pools.device
780
+ self.p_poses = self.p_poses.to(device)
781
+ self.g_pos = self.g_pos.to(device)
782
+
783
+
784
+ # attention between glb (q) & multisensory concated-locs (k,v)
785
+ g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
786
+
787
+
788
+ g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
789
+ g_hw_b_c = self.norm1(g_hw_b_c)
790
+ g_hw_b_c = g_hw_b_c + self.dropout2(self.linear2(self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
791
+ g_hw_b_c = self.norm2(g_hw_b_c)
792
+
793
+ # attention between origin locs (q) & freashed glb (k,v)
794
+ l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
795
+ _g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
796
+ _g_hw_b_c = rearrange(_g_hw_b_c, "(ng h) (nw w) b c -> (h w) (ng nw b) c", ng=2, nw=2)
797
+ outputs_re = []
798
+ for i, (_l, _g) in enumerate(zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
799
+ outputs_re.append(self.attention[i + 1](_l, _g, _g)[0]) # (h w) 1 c
800
+ outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
801
+
802
+ l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
803
+ l_hw_b_c = self.norm1(l_hw_b_c)
804
+ l_hw_b_c = l_hw_b_c + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
805
+ l_hw_b_c = self.norm2(l_hw_b_c)
806
+
807
+ l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
808
+ return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
809
+
810
+
811
+
812
+
813
+
814
+
815
+
816
+
817
+
818
+ class MCRM(nn.Module):
819
+ def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
820
+ super(MCRM, self).__init__()
821
+ self.attention = nn.ModuleList([
822
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
823
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
824
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
825
+ nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
826
+ ])
827
+ self.linear3 = nn.Linear(d_model, d_model * 2)
828
+ self.linear4 = nn.Linear(d_model * 2, d_model)
829
+ self.norm1 = nn.LayerNorm(d_model)
830
+ self.norm2 = nn.LayerNorm(d_model)
831
+ self.dropout = nn.Dropout(0.1)
832
+ self.dropout1 = nn.Dropout(0.1)
833
+ self.dropout2 = nn.Dropout(0.1)
834
+ self.sigmoid = nn.Sigmoid()
835
+ self.activation = get_activation_fn('gelu')
836
+ self.sal_conv = nn.Conv2d(d_model, 1, 1)
837
+ self.pool_ratios = pool_ratios
838
+
839
+ def forward(self, x):
840
+ device = x.device
841
+ b, c, h, w = x.size()
842
+ loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
843
+
844
+ patched_glb = rearrange(glb, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
845
+
846
+ token_attention_map = self.sigmoid(self.sal_conv(glb))
847
+ token_attention_map = F.interpolate(token_attention_map, size=patches2image(loc).shape[-2:], mode='nearest')
848
+ loc = loc * rearrange(token_attention_map, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
849
+
850
+ pools = []
851
+ for pool_ratio in self.pool_ratios:
852
+ tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
853
+ pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
854
+ pools.append(rearrange(pool, 'nl c h w -> nl c (h w)')) # nl(4),c,hw
855
+
856
+ pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
857
+ loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
858
+
859
+ outputs = []
860
+ for i, q in enumerate(loc_.unbind(dim=0)): # traverse all local patches
861
+ v = pools[i]
862
+ k = v
863
+ outputs.append(self.attention[i](q, k, v)[0])
864
+
865
+ outputs = torch.cat(outputs, 1)
866
+ src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
867
+ src = self.norm1(src)
868
+ src = src + self.dropout2(self.linear4(self.dropout(self.activation(self.linear3(src)).clone())))
869
+ src = self.norm2(src)
870
+ src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
871
+ glb = glb + F.interpolate(patches2image(src), size=glb.shape[-2:], mode='nearest') # freshed glb
872
+
873
+ return torch.cat((src, glb), 0), token_attention_map
874
+
875
+
876
+
877
+ class BEN_Base(nn.Module):
878
+ def __init__(self):
879
+ super().__init__()
880
+
881
+ self.backbone = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
882
+ emb_dim = 128
883
+ self.sideout5 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
884
+ self.sideout4 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
885
+ self.sideout3 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
886
+ self.sideout2 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
887
+ self.sideout1 = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
888
+
889
+ self.output5 = make_cbr(1024, emb_dim)
890
+ self.output4 = make_cbr(512, emb_dim)
891
+ self.output3 = make_cbr(256, emb_dim)
892
+ self.output2 = make_cbr(128, emb_dim)
893
+ self.output1 = make_cbr(128, emb_dim)
894
+
895
+ self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
896
+ self.conv1 = make_cbr(emb_dim, emb_dim)
897
+ self.conv2 = make_cbr(emb_dim, emb_dim)
898
+ self.conv3 = make_cbr(emb_dim, emb_dim)
899
+ self.conv4 = make_cbr(emb_dim, emb_dim)
900
+ self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
901
+ self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
902
+ self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
903
+ self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
904
+
905
+ self.insmask_head = nn.Sequential(
906
+ nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
907
+ nn.InstanceNorm2d(384),
908
+ nn.GELU(),
909
+ nn.Conv2d(384, 384, kernel_size=3, padding=1),
910
+ nn.InstanceNorm2d(384),
911
+ nn.GELU(),
912
+ nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)
913
+ )
914
+
915
+ self.shallow = nn.Sequential(nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
916
+ self.upsample1 = make_cbg(emb_dim, emb_dim)
917
+ self.upsample2 = make_cbg(emb_dim, emb_dim)
918
+ self.output = nn.Sequential(nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
919
+
920
+ for m in self.modules():
921
+ if isinstance(m, nn.GELU) or isinstance(m, nn.Dropout):
922
+ m.inplace = True
923
+
924
+ @torch.inference_mode()
925
+ @torch.autocast(device_type="cuda",dtype=torch.float16)
926
+ def forward(self, x):
927
+ real_batch = x.size(0)
928
+
929
+ shallow_batch = self.shallow(x)
930
+ glb_batch = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
931
+
932
+
933
+
934
+ final_input = None
935
+ for i in range(real_batch):
936
+ start = i * 4
937
+ end = (i + 1) * 4
938
+ loc_batch = image2patches(x[i,:,:,:].unsqueeze(dim=0))
939
+ input_ = torch.cat((loc_batch, glb_batch[i,:,:,:].unsqueeze(dim=0)), dim=0)
940
+
941
+
942
+ if final_input == None:
943
+ final_input= input_
944
+ else: final_input = torch.cat((final_input, input_), dim=0)
945
+
946
+ features = self.backbone(final_input)
947
+ outputs = []
948
+ for i in range(real_batch):
949
+
950
+ start = i * 5
951
+ end = (i + 1) * 5
952
+
953
+ f4 = features[4][start:end, :, :, :] # shape: [5, C, H, W]
954
+ f3 = features[3][start:end, :, :, :]
955
+ f2 = features[2][start:end, :, :, :]
956
+ f1 = features[1][start:end, :, :, :]
957
+ f0 = features[0][start:end, :, :, :]
958
+ e5 = self.output5(f4)
959
+ e4 = self.output4(f3)
960
+ e3 = self.output3(f2)
961
+ e2 = self.output2(f1)
962
+ e1 = self.output1(f0)
963
+ loc_e5, glb_e5 = e5.split([4, 1], dim=0)
964
+ e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
965
+
966
+
967
+ e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
968
+ e4 = self.conv4(e4)
969
+ e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
970
+ e3 = self.conv3(e3)
971
+ e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
972
+ e2 = self.conv2(e2)
973
+ e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
974
+ e1 = self.conv1(e1)
975
+
976
+ loc_e1, glb_e1 = e1.split([4, 1], dim=0)
977
+
978
+ output1_cat = patches2image(loc_e1) # (1,128,256,256)
979
+
980
+ # add glb feat in
981
+ output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
982
+ # merge
983
+ final_output = self.insmask_head(output1_cat) # (1,128,256,256)
984
+ # shallow feature merge
985
+ shallow = shallow_batch[i,:,:,:].unsqueeze(dim=0)
986
+ final_output = final_output + resize_as(shallow, final_output)
987
+ final_output = self.upsample1(rescale_to(final_output))
988
+ final_output = rescale_to(final_output + resize_as(shallow, final_output))
989
+ final_output = self.upsample2(final_output)
990
+ final_output = self.output(final_output)
991
+ mask = final_output.sigmoid()
992
+ outputs.append(mask)
993
+
994
+ return torch.cat(outputs, dim=0)
995
+
996
+
997
+
998
+
999
+ def loadcheckpoints(self,model_path):
1000
+ model_dict = torch.load(model_path, map_location="cpu", weights_only=True)
1001
+ self.load_state_dict(model_dict['model_state_dict'], strict=True)
1002
+ del model_path
1003
+
1004
+ def inference(self,image,refine_foreground=False):
1005
+
1006
+ set_random_seed(9)
1007
+ # image = ImageOps.exif_transpose(image)
1008
+ if isinstance(image, Image.Image):
1009
+ image, h, w,original_image = rgb_loader_refiner(image)
1010
+ img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
1011
+ with torch.no_grad():
1012
+ res = self.forward(img_tensor)
1013
+
1014
+ # Show Results
1015
+ if refine_foreground == True:
1016
+
1017
+ pred_pil = transforms.ToPILImage()(res.squeeze())
1018
+ image_masked = refine_foreground_process(original_image, pred_pil)
1019
+
1020
+ image_masked.putalpha(pred_pil.resize(original_image.size))
1021
+ return image_masked
1022
+
1023
+ else:
1024
+ alpha = postprocess_image(res, im_size=[w,h])
1025
+ pred_pil = transforms.ToPILImage()(alpha)
1026
+ mask = pred_pil.resize(original_image.size)
1027
+ original_image.putalpha(mask)
1028
+ # mask = Image.fromarray(alpha)
1029
+
1030
+ return original_image
1031
+
1032
+
1033
+ else:
1034
+ foregrounds = []
1035
+ for batch in image:
1036
+ image, h, w,original_image = rgb_loader_refiner(batch)
1037
+ img_tensor = img_transform(image).unsqueeze(0).to(next(self.parameters()).device)
1038
+
1039
+ with torch.no_grad():
1040
+ res = self.forward(img_tensor)
1041
+
1042
+ if refine_foreground == True:
1043
+
1044
+ pred_pil = transforms.ToPILImage()(res.squeeze())
1045
+ image_masked = refine_foreground_process(original_image, pred_pil)
1046
+
1047
+ image_masked.putalpha(pred_pil.resize(original_image.size))
1048
+
1049
+ foregrounds.append(image_masked)
1050
+ else:
1051
+ alpha = postprocess_image(res, im_size=[w,h])
1052
+ pred_pil = transforms.ToPILImage()(alpha)
1053
+ mask = pred_pil.resize(original_image.size)
1054
+ original_image.putalpha(mask)
1055
+ # mask = Image.fromarray(alpha)
1056
+ foregrounds.append(original_image)
1057
+
1058
+ return foregrounds
1059
+
1060
+
1061
+
1062
+ def segment_video(self, video_path, output_path="./", fps=0, refine_foreground=False, batch=1, print_frames_processed=True, webm=False, rgb_value=(0, 255, 0), max_frames=100):
1063
+ cap = cv2.VideoCapture(video_path)
1064
+ if not cap.isOpened():
1065
+ raise IOError(f"Cannot open video: {video_path}")
1066
+
1067
+ original_fps = cap.get(cv2.CAP_PROP_FPS)
1068
+ original_fps = 30 if original_fps == 0 else original_fps
1069
+ fps = original_fps if fps == 0 else fps
1070
+
1071
+ ret, first_frame = cap.read()
1072
+ if not ret:
1073
+ raise ValueError("No frames found in the video.")
1074
+ height, width = first_frame.shape[:2]
1075
+ cap.set(cv2.CAP_PROP_POS_FRAMES, 0)
1076
+
1077
+ foregrounds = []
1078
+ frame_idx = 0
1079
+ total_frames = min(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), max_frames)
1080
+
1081
+ while frame_idx < max_frames:
1082
+ ret, frame = cap.read()
1083
+ if not ret:
1084
+ break
1085
+
1086
+ # Process one frame at a time
1087
+ frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
1088
+ pil_frame = Image.fromarray(frame_rgb)
1089
+
1090
+ # Process single frame using the same path as image processing
1091
+ result = self.inference(pil_frame, refine_foreground)
1092
+ foregrounds.append(result)
1093
+
1094
+ if print_frames_processed:
1095
+ print(f"Processed frame {frame_idx+1} of {total_frames}")
1096
+
1097
+ frame_idx += 1
1098
+
1099
+ cap.release()
1100
+
1101
+ if webm:
1102
+ alpha_webm_path = os.path.join(output_path, "foreground.webm")
1103
+ pil_images_to_webm_alpha(foregrounds, alpha_webm_path, fps=original_fps)
1104
+ else:
1105
+ fg_output = os.path.join(output_path, 'foreground.mp4')
1106
+ pil_images_to_mp4(foregrounds, fg_output, fps=original_fps, rgb_value=rgb_value)
1107
+ cv2.destroyAllWindows()
1108
+
1109
+ try:
1110
+ fg_audio_output = os.path.join(output_path, 'foreground.mp4')
1111
+ add_audio_to_video(fg_output, video_path, fg_audio_output)
1112
+ except Exception as e:
1113
+ print("No audio found in the original video")
1114
+ print(e)
1115
+
1116
+
1117
+
1118
+
1119
+
1120
+ def rgb_loader_refiner( original_image):
1121
+ h, w = original_image.size
1122
+
1123
+ image = original_image
1124
+ # Convert to RGB if necessary
1125
+ if image.mode != 'RGB':
1126
+ image = image.convert('RGB')
1127
+
1128
+ # Resize the image
1129
+ image = image.resize((1024, 1024), resample=Image.LANCZOS)
1130
+
1131
+ return image.convert('RGB'), h, w,original_image
1132
+
1133
+ # Define the image transformation
1134
+ img_transform = transforms.Compose([
1135
+ transforms.ToTensor(),
1136
+ transforms.ConvertImageDtype(torch.float16),
1137
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
1138
+ ])
1139
+
1140
+
1141
+
1142
+
1143
+ def pil_images_to_mp4(images, output_path, fps=24, rgb_value=(0, 255, 0)):
1144
+ """
1145
+ Converts an array of PIL images to an MP4 video.
1146
+
1147
+ Args:
1148
+ images: List of PIL images
1149
+ output_path: Path to save the MP4 file
1150
+ fps: Frames per second (default: 24)
1151
+ rgb_value: Background RGB color tuple (default: green (0, 255, 0))
1152
+ """
1153
+ if not images:
1154
+ raise ValueError("No images provided to convert to MP4.")
1155
+
1156
+ width, height = images[0].size
1157
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
1158
+ video_writer = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
1159
+
1160
+ for image in images:
1161
+ # If image has alpha channel, composite onto the specified background color
1162
+ if image.mode == 'RGBA':
1163
+ # Create background image with specified RGB color
1164
+ background = Image.new('RGB', image.size, rgb_value)
1165
+ background = background.convert('RGBA')
1166
+ # Composite the image onto the background
1167
+ image = Image.alpha_composite(background, image)
1168
+ image = image.convert('RGB')
1169
+ else:
1170
+ # Ensure RGB format for non-alpha images
1171
+ image = image.convert('RGB')
1172
+
1173
+ # Convert to OpenCV format and write
1174
+ open_cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
1175
+ video_writer.write(open_cv_image)
1176
+
1177
+ video_writer.release()
1178
+
1179
+ def pil_images_to_webm_alpha(images, output_path, fps=30):
1180
+ """
1181
+ Converts a list of PIL RGBA images to a VP9 .webm video with alpha channel.
1182
+
1183
+ NOTE: Not all players will display alpha in WebM.
1184
+ Browsers like Chrome/Firefox typically do support VP9 alpha.
1185
+ """
1186
+ if not images:
1187
+ raise ValueError("No images provided for WebM with alpha.")
1188
+
1189
+ # Ensure output directory exists
1190
+ os.makedirs(os.path.dirname(output_path), exist_ok=True)
1191
+
1192
+ with tempfile.TemporaryDirectory() as tmpdir:
1193
+ # Save frames as PNG (with alpha)
1194
+ for idx, img in enumerate(images):
1195
+ if img.mode != "RGBA":
1196
+ img = img.convert("RGBA")
1197
+ out_path = os.path.join(tmpdir, f"{idx:06d}.png")
1198
+ img.save(out_path, "PNG")
1199
+
1200
+ # Construct ffmpeg command
1201
+ # -c:v libvpx-vp9 => VP9 encoder
1202
+ # -pix_fmt yuva420p => alpha-enabled pixel format
1203
+ # -auto-alt-ref 0 => helps preserve alpha frames (libvpx quirk)
1204
+ ffmpeg_cmd = [
1205
+ "ffmpeg", "-y",
1206
+ "-framerate", str(fps),
1207
+ "-i", os.path.join(tmpdir, "%06d.png"),
1208
+ "-c:v", "libvpx-vp9",
1209
+ "-pix_fmt", "yuva420p",
1210
+ "-auto-alt-ref", "0",
1211
+ output_path
1212
+ ]
1213
+
1214
+ subprocess.run(ffmpeg_cmd, check=True)
1215
+
1216
+ print(f"WebM with alpha saved to {output_path}")
1217
+
1218
+ def add_audio_to_video(video_without_audio_path, original_video_path, output_path):
1219
+ """
1220
+ Check if the original video has an audio stream. If yes, add it. If not, skip.
1221
+ """
1222
+ # 1) Probe original video for audio streams
1223
+ probe_command = [
1224
+ 'ffprobe', '-v', 'error',
1225
+ '-select_streams', 'a:0',
1226
+ '-show_entries', 'stream=index',
1227
+ '-of', 'csv=p=0',
1228
+ original_video_path
1229
+ ]
1230
+ result = subprocess.run(probe_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
1231
+
1232
+ # result.stdout is empty if no audio stream found
1233
+ if not result.stdout.strip():
1234
+ print("No audio track found in original video, skipping audio addition.")
1235
+ return
1236
+
1237
+ print("Audio track detected; proceeding to mux audio.")
1238
+ # 2) If audio found, run ffmpeg to add it
1239
+ command = [
1240
+ 'ffmpeg', '-y',
1241
+ '-i', video_without_audio_path,
1242
+ '-i', original_video_path,
1243
+ '-c', 'copy',
1244
+ '-map', '0:v:0',
1245
+ '-map', '1:a:0', # we know there's an audio track now
1246
+ output_path
1247
+ ]
1248
+ subprocess.run(command, check=True)
1249
+ print(f"Audio added successfully => {output_path}")
1250
+
1251
+
1252
+
1253
+
1254
+
1255
+ ### Thanks to the source: https://huggingface.co/ZhengPeng7/BiRefNet/blob/main/handler.py
1256
+ def refine_foreground_process(image, mask, r=90):
1257
+ if mask.size != image.size:
1258
+ mask = mask.resize(image.size)
1259
+ image = np.array(image) / 255.0
1260
+ mask = np.array(mask) / 255.0
1261
+ estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
1262
+ image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
1263
+ return image_masked
1264
+
1265
+
1266
+ def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
1267
+ # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
1268
+ alpha = alpha[:, :, None]
1269
+ F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
1270
+ return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
1271
+
1272
+
1273
+ def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
1274
+ if isinstance(image, Image.Image):
1275
+ image = np.array(image) / 255.0
1276
+ blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
1277
+
1278
+ blurred_FA = cv2.blur(F * alpha, (r, r))
1279
+ blurred_F = blurred_FA / (blurred_alpha + 1e-5)
1280
+
1281
+ blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
1282
+ blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
1283
+ F = blurred_F + alpha * \
1284
+ (image - alpha * blurred_F - (1 - alpha) * blurred_B)
1285
+ F = np.clip(F, 0, 1)
1286
+ return F, blurred_B
1287
+
1288
+
1289
+
1290
+ def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
1291
+ result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
1292
+ ma = torch.max(result)
1293
+ mi = torch.min(result)
1294
+ result = (result - mi) / (ma - mi)
1295
+ im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
1296
+ im_array = np.squeeze(im_array)
1297
+ return im_array
1298
+
1299
+
1300
+
1301
+
1302
+ def rgb_loader_refiner( original_image):
1303
+ h, w = original_image.size
1304
+ # # Apply EXIF orientation
1305
+
1306
+ if original_image.mode != 'RGB':
1307
+ original_image = original_image.convert('RGB')
1308
+
1309
+ image = original_image
1310
+ # Convert to RGB if necessary
1311
+
1312
+ # Resize the image
1313
+ image = image.resize((1024, 1024), resample=Image.LANCZOS)
1314
+
1315
+ return image, h, w,original_image
1316
+
config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "PramaLLC/BEN2",
3
+ "architectures": ["BEN"],
4
+ "version": "2.0",
5
+ "torch_dtype": "float32"
6
+ }
gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
image.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy>=1.21.0
2
+ torch>=1.9.0
3
+ einops>=0.6.0
4
+ Pillow>=9.0.0
5
+ timm>=0.6.0
6
+ torchvision>=0.10.0
7
+ opencv-python
8
+ loadimg
9
+ gradio_imageslider
10
+ gradio
11
+ huggingface_hub
12
+ GitPython