PierreBrunelle's picture
Create app.py
ef89dbb verified
raw
history blame
4.46 kB
import gradio as gr
import pandas as pd
import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter
import numpy as np
from pixeltable.functions.huggingface import sentence_transformer
from pixeltable.functions import openai
import os
# Ensure a clean slate for the demo
pxt.drop_dir('rag_demo', force=True)
pxt.create_dir('rag_demo')
# Set up embedding function
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
return sentence_transformer(text, model_id='intfloat/e5-large-v2')
# Create prompt function
@pxt.udf
def create_prompt(top_k_list: list[dict], question: str) -> str:
concat_top_k = '\n\n'.join(
elt['text'] for elt in reversed(top_k_list)
)
return f'''
PASSAGES:
{concat_top_k}
QUESTION:
{question}'''
def process_files(ground_truth_file, pdf_files):
# Process ground truth file
if ground_truth_file.name.endswith('.csv'):
df = pd.read_csv(ground_truth_file.name)
else:
df = pd.read_excel(ground_truth_file.name)
queries_t = pxt.create_table('rag_demo.queries', df)
# Process PDF files
documents_t = pxt.create_table(
'rag_demo.documents',
{'document': pxt.DocumentType()}
)
for pdf_file in pdf_files:
documents_t.insert({'document': pdf_file.name})
# Create chunks view
chunks_t = pxt.create_view(
'rag_demo.chunks',
documents_t,
iterator=DocumentSplitter.create(
document=documents_t.document,
separators='token_limit',
limit=300
)
)
# Add embedding index
chunks_t.add_embedding_index('text', string_embed=e5_embed)
# Create top_k query
@chunks_t.query
def top_k(query_text: str):
sim = chunks_t.text.similarity(query_text)
return (
chunks_t.order_by(sim, asc=False)
.select(chunks_t.text, sim=sim)
.limit(5)
)
# Add computed columns to queries_t
queries_t['question_context'] = chunks_t.top_k(queries_t.Question)
queries_t['prompt'] = create_prompt(
queries_t.question_context, queries_t.Question
)
# Prepare messages for OpenAI
messages = [
{
'role': 'system',
'content': 'Please read the following passages and answer the question based on their contents.'
},
{
'role': 'user',
'content': queries_t.prompt
}
]
# Add OpenAI response column
queries_t['response'] = openai.chat_completions(
model='gpt-4-0125-preview', messages=messages
)
queries_t['answer'] = queries_t.response.choices[0].message.content
return "Files processed successfully!"
def query_llm(question):
queries_t = pxt.get_table('rag_demo.queries')
chunks_t = pxt.get_table('rag_demo.chunks')
# Perform top-k lookup
context = chunks_t.top_k(question).collect()
# Create prompt
prompt = create_prompt(context, question)
# Prepare messages for OpenAI
messages = [
{
'role': 'system',
'content': 'Please read the following passages and answer the question based on their contents.'
},
{
'role': 'user',
'content': prompt
}
]
# Get LLM response
response = openai.chat_completions(model='gpt-4-0125-preview', messages=messages)
answer = response.choices[0].message.content
# Add new row to queries_t
new_row = {'Question': question, 'answer': answer}
queries_t.insert([new_row])
# Return updated dataframe
return queries_t.select(queries_t.Question, queries_t.answer).collect()
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# RAG Demo App")
with gr.Row():
ground_truth_file = gr.File(label="Upload Ground Truth (CSV or XLSX)")
pdf_files = gr.File(label="Upload PDF Documents", file_count="multiple")
process_button = gr.Button("Process Files")
process_output = gr.Textbox(label="Processing Output")
question_input = gr.Textbox(label="Enter your question")
query_button = gr.Button("Query LLM")
output_dataframe = gr.Dataframe(label="LLM Outputs")
process_button.click(process_files, inputs=[ground_truth_file, pdf_files], outputs=process_output)
query_button.click(query_llm, inputs=question_input, outputs=output_dataframe)
if __name__ == "__main__":
demo.launch()