Paul DAMPFHOEFFER
commited on
Commit
·
b5ed9fd
1
Parent(s):
c800f36
feat: init flash api
Browse files- app.py +85 -2
- requirements.txt +10 -1
app.py
CHANGED
@@ -1,7 +1,90 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
5 |
@app.get("/")
|
6 |
def greet_json():
|
7 |
-
return {"Hello": "World!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
from transformers import AriaProcessor, AriaForConditionalGeneration
|
6 |
+
from fastapi import FastAPI, Request
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
@app.get("/")
|
11 |
def greet_json():
|
12 |
+
return {"Hello": "World!"}
|
13 |
+
|
14 |
+
@app.post("/")
|
15 |
+
async def aria_image_to_text(request: Request):
|
16 |
+
data = await request.json()
|
17 |
+
image_url = data.get("image_url")
|
18 |
+
image = Image.open(requests.get(image_url, stream=True).raw)
|
19 |
+
|
20 |
+
model_id_or_path = "rhymes-ai/Aria"
|
21 |
+
model = AriaForConditionalGeneration.from_pretrained(
|
22 |
+
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
23 |
+
)
|
24 |
+
|
25 |
+
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
26 |
+
|
27 |
+
messages = [
|
28 |
+
{
|
29 |
+
"role": "user",
|
30 |
+
"content": [
|
31 |
+
{"type": "image"},
|
32 |
+
{"text": "what is the image?", "type": "text"},
|
33 |
+
],
|
34 |
+
}
|
35 |
+
]
|
36 |
+
|
37 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
38 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
39 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
40 |
+
inputs.to(model.device)
|
41 |
+
|
42 |
+
output = model.generate(
|
43 |
+
**inputs,
|
44 |
+
max_new_tokens=15,
|
45 |
+
stop_strings=["<|im_end|>"],
|
46 |
+
tokenizer=processor.tokenizer,
|
47 |
+
do_sample=True,
|
48 |
+
temperature=0.9,
|
49 |
+
)
|
50 |
+
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
51 |
+
response = processor.decode(output_ids, skip_special_tokens=True)
|
52 |
+
return {"response": response}
|
53 |
+
|
54 |
+
@app.get("/aria-test")
|
55 |
+
def aria_test():
|
56 |
+
model_id_or_path = "rhymes-ai/Aria"
|
57 |
+
model = AriaForConditionalGeneration.from_pretrained(
|
58 |
+
model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16
|
59 |
+
)
|
60 |
+
|
61 |
+
processor = AriaProcessor.from_pretrained(model_id_or_path)
|
62 |
+
|
63 |
+
image = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
|
64 |
+
|
65 |
+
messages = [
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [
|
69 |
+
{"type": "image"},
|
70 |
+
{"text": "what is the image?", "type": "text"},
|
71 |
+
],
|
72 |
+
}
|
73 |
+
]
|
74 |
+
|
75 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
76 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
77 |
+
inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
|
78 |
+
inputs.to(model.device)
|
79 |
+
|
80 |
+
output = model.generate(
|
81 |
+
**inputs,
|
82 |
+
max_new_tokens=15,
|
83 |
+
stop_strings=["<|im_end|>"],
|
84 |
+
tokenizer=processor.tokenizer,
|
85 |
+
do_sample=True,
|
86 |
+
temperature=0.9,
|
87 |
+
)
|
88 |
+
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
89 |
+
response = processor.decode(output_ids, skip_special_tokens=True)
|
90 |
+
return {"response": response}
|
requirements.txt
CHANGED
@@ -1,2 +1,11 @@
|
|
1 |
fastapi
|
2 |
-
uvicorn[standard]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
+
uvicorn[standard]
|
3 |
+
transformers>=4.48.0
|
4 |
+
accelerate
|
5 |
+
sentencepiece
|
6 |
+
torchvision
|
7 |
+
requests
|
8 |
+
torch
|
9 |
+
Pillow
|
10 |
+
flash-attn
|
11 |
+
grouped_gemm==0.1.6
|