Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,6 +13,25 @@ import logging
|
|
13 |
from typing import Dict, List, Tuple, Optional
|
14 |
import traceback
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Configure logging
|
17 |
logging.basicConfig(
|
18 |
level=logging.INFO,
|
@@ -44,33 +63,19 @@ FONT_STYLES = {
|
|
44 |
}
|
45 |
}
|
46 |
|
|
|
47 |
class TTSDatasetCollector:
|
48 |
"""Manages TTS dataset collection and organization with enhanced features"""
|
49 |
|
50 |
def __init__(self):
|
51 |
"""Initialize the TTS Dataset Collector"""
|
52 |
-
# Initialize NLTK
|
53 |
-
self._initialize_nltk()
|
54 |
-
|
55 |
-
# Set up paths and directories
|
56 |
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
|
57 |
-
self.sentences
|
58 |
-
self.current_index
|
59 |
-
self.current_font
|
60 |
self.setup_directories()
|
61 |
-
|
62 |
logger.info("TTS Dataset Collector initialized")
|
63 |
|
64 |
-
def _initialize_nltk(self) -> None:
|
65 |
-
"""Initialize NLTK with error handling"""
|
66 |
-
try:
|
67 |
-
nltk.download('punkt', quiet=True)
|
68 |
-
logger.info("NLTK punkt tokenizer downloaded successfully")
|
69 |
-
except Exception as e:
|
70 |
-
logger.error(f"Failed to download NLTK data: {str(e)}")
|
71 |
-
logger.error(traceback.format_exc())
|
72 |
-
raise RuntimeError("Failed to initialize NLTK. Please check your internet connection.")
|
73 |
-
|
74 |
def setup_directories(self) -> None:
|
75 |
"""Create necessary directory structure with logging"""
|
76 |
try:
|
@@ -111,6 +116,29 @@ class TTSDatasetCollector:
|
|
111 |
except Exception as e:
|
112 |
logger.error(f"Failed to log operation: {str(e)}")
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def load_text_file(self, file) -> Tuple[bool, str]:
|
115 |
"""Process and load text file with enhanced error handling"""
|
116 |
if not file:
|
@@ -124,23 +152,7 @@ class TTSDatasetCollector:
|
|
124 |
with open(file.name, 'r', encoding='utf-8') as f:
|
125 |
text = f.read()
|
126 |
|
127 |
-
|
128 |
-
if not text.strip():
|
129 |
-
return False, "File is empty"
|
130 |
-
|
131 |
-
# Tokenize sentences
|
132 |
-
self.sentences = nltk.sent_tokenize(text)
|
133 |
-
if not self.sentences:
|
134 |
-
return False, "No valid sentences found in file"
|
135 |
-
|
136 |
-
self.current_index = 0
|
137 |
-
|
138 |
-
# Log success
|
139 |
-
self.log_operation(
|
140 |
-
f"Loaded text file: {file.name} with {len(self.sentences)} sentences"
|
141 |
-
)
|
142 |
-
|
143 |
-
return True, f"Successfully loaded {len(self.sentences)} sentences"
|
144 |
|
145 |
except UnicodeDecodeError:
|
146 |
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
|
@@ -157,20 +169,21 @@ class TTSDatasetCollector:
|
|
157 |
font_css = FONT_STYLES[self.current_font]['css']
|
158 |
return f"<div style='{font_css}'>{text}</div>"
|
159 |
|
160 |
-
|
161 |
-
def generate_filenames(self, dataset_name: str, speaker_id: str) -> Tuple[str, str]:
|
162 |
-
"""Generate unique filenames for audio and text files"""
|
163 |
-
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
164 |
-
sentence_id = f"{self.current_index+1:04d}"
|
165 |
-
base_name = f"{dataset_name}_{speaker_id}_{sentence_id}_{timestamp}"
|
166 |
-
return f"{base_name}.wav", f"{base_name}.txt"
|
167 |
-
|
168 |
def set_font(self, font_style: str) -> Tuple[bool, str]:
|
169 |
"""Set the current font style"""
|
170 |
if font_style not in FONT_STYLES:
|
171 |
return False, f"Invalid font style. Available styles: {', '.join(FONT_STYLES.keys())}"
|
172 |
self.current_font = font_style
|
173 |
return True, f"Font style set to {font_style}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str]:
|
176 |
"""Save recording with enhanced error handling and logging"""
|
@@ -299,29 +312,29 @@ Font_Style: {metadata['font_style']}
|
|
299 |
error_msg = f"Error updating metadata: {str(e)}"
|
300 |
self.log_operation(error_msg, "error")
|
301 |
logger.error(traceback.format_exc())
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
return {
|
307 |
-
'current':
|
308 |
-
'next':
|
309 |
-
'progress':
|
310 |
}
|
311 |
-
|
312 |
-
current = self.get_styled_text(self.sentences[self.current_index])
|
313 |
-
next_text = None
|
314 |
-
|
315 |
-
if self.current_index < len(self.sentences) - 1:
|
316 |
-
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
|
317 |
-
|
318 |
-
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
|
319 |
-
|
320 |
-
return {
|
321 |
-
'current': current,
|
322 |
-
'next': next_text,
|
323 |
-
'progress': progress
|
324 |
-
}
|
325 |
|
326 |
def navigate(self, direction: str) -> Dict[str, Optional[str]]:
|
327 |
"""Navigate through sentences"""
|
@@ -390,14 +403,20 @@ def create_interface():
|
|
390 |
|
391 |
collector = TTSDatasetCollector()
|
392 |
|
|
|
393 |
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
|
394 |
gr.Markdown("# TTS Dataset Collection Tool")
|
395 |
|
396 |
with gr.Row():
|
397 |
-
# Left column - Configuration
|
398 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
399 |
file_input = gr.File(
|
400 |
-
label="Upload Text File (.txt)",
|
401 |
file_types=[".txt"]
|
402 |
)
|
403 |
speaker_id = gr.Textbox(
|
@@ -455,6 +474,36 @@ def create_interface():
|
|
455 |
value={}
|
456 |
)
|
457 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
458 |
def update_font(font_style):
|
459 |
"""Update font and refresh display"""
|
460 |
success, msg = collector.set_font(font_style)
|
@@ -535,6 +584,12 @@ def create_interface():
|
|
535 |
}
|
536 |
|
537 |
# Event handlers
|
|
|
|
|
|
|
|
|
|
|
|
|
538 |
file_input.upload(
|
539 |
load_file,
|
540 |
inputs=[file_input],
|
@@ -567,7 +622,7 @@ def create_interface():
|
|
567 |
dataset_info.value = collector.get_dataset_statistics()
|
568 |
|
569 |
return interface
|
570 |
-
|
571 |
if __name__ == "__main__":
|
572 |
try:
|
573 |
# Set up any required environment variables
|
|
|
13 |
from typing import Dict, List, Tuple, Optional
|
14 |
import traceback
|
15 |
|
16 |
+
# Download NLTK data during initialization
|
17 |
+
try:
|
18 |
+
nltk.download('punkt', quiet=True)
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Warning: Failed to download NLTK data: {str(e)}")
|
21 |
+
print("Downloading from alternative source...")
|
22 |
+
try:
|
23 |
+
import ssl
|
24 |
+
try:
|
25 |
+
_create_unverified_https_context = ssl._create_unverified_context
|
26 |
+
except AttributeError:
|
27 |
+
pass
|
28 |
+
else:
|
29 |
+
ssl._create_default_https_context = _create_unverified_https_context
|
30 |
+
nltk.download('punkt', quiet=True)
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Critical error downloading NLTK data: {str(e)}")
|
33 |
+
raise
|
34 |
+
|
35 |
# Configure logging
|
36 |
logging.basicConfig(
|
37 |
level=logging.INFO,
|
|
|
63 |
}
|
64 |
}
|
65 |
|
66 |
+
|
67 |
class TTSDatasetCollector:
|
68 |
"""Manages TTS dataset collection and organization with enhanced features"""
|
69 |
|
70 |
def __init__(self):
|
71 |
"""Initialize the TTS Dataset Collector"""
|
|
|
|
|
|
|
|
|
72 |
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
|
73 |
+
self.sentences = []
|
74 |
+
self.current_index = 0
|
75 |
+
self.current_font = "english_serif"
|
76 |
self.setup_directories()
|
|
|
77 |
logger.info("TTS Dataset Collector initialized")
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def setup_directories(self) -> None:
|
80 |
"""Create necessary directory structure with logging"""
|
81 |
try:
|
|
|
116 |
except Exception as e:
|
117 |
logger.error(f"Failed to log operation: {str(e)}")
|
118 |
|
119 |
+
def process_text(self, text: str) -> Tuple[bool, str]:
|
120 |
+
"""Process pasted or loaded text with error handling"""
|
121 |
+
try:
|
122 |
+
if not text.strip():
|
123 |
+
return False, "Text is empty"
|
124 |
+
|
125 |
+
# Tokenize sentences
|
126 |
+
self.sentences = nltk.sent_tokenize(text.strip())
|
127 |
+
if not self.sentences:
|
128 |
+
return False, "No valid sentences found in text"
|
129 |
+
|
130 |
+
self.current_index = 0
|
131 |
+
|
132 |
+
# Log success
|
133 |
+
self.log_operation(f"Processed text with {len(self.sentences)} sentences")
|
134 |
+
return True, f"Successfully loaded {len(self.sentences)} sentences"
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
error_msg = f"Error processing text: {str(e)}"
|
138 |
+
self.log_operation(error_msg, "error")
|
139 |
+
logger.error(traceback.format_exc())
|
140 |
+
return False, error_msg
|
141 |
+
|
142 |
def load_text_file(self, file) -> Tuple[bool, str]:
|
143 |
"""Process and load text file with enhanced error handling"""
|
144 |
if not file:
|
|
|
152 |
with open(file.name, 'r', encoding='utf-8') as f:
|
153 |
text = f.read()
|
154 |
|
155 |
+
return self.process_text(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
except UnicodeDecodeError:
|
158 |
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
|
|
|
169 |
font_css = FONT_STYLES[self.current_font]['css']
|
170 |
return f"<div style='{font_css}'>{text}</div>"
|
171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
def set_font(self, font_style: str) -> Tuple[bool, str]:
|
173 |
"""Set the current font style"""
|
174 |
if font_style not in FONT_STYLES:
|
175 |
return False, f"Invalid font style. Available styles: {', '.join(FONT_STYLES.keys())}"
|
176 |
self.current_font = font_style
|
177 |
return True, f"Font style set to {font_style}"
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
def generate_filenames(self, dataset_name: str, speaker_id: str) -> Tuple[str, str]:
|
182 |
+
"""Generate unique filenames for audio and text files"""
|
183 |
+
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
184 |
+
sentence_id = f"{self.current_index+1:04d}"
|
185 |
+
base_name = f"{dataset_name}_{speaker_id}_{sentence_id}_{timestamp}"
|
186 |
+
return f"{base_name}.wav", f"{base_name}.txt"
|
187 |
|
188 |
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str]:
|
189 |
"""Save recording with enhanced error handling and logging"""
|
|
|
312 |
error_msg = f"Error updating metadata: {str(e)}"
|
313 |
self.log_operation(error_msg, "error")
|
314 |
logger.error(traceback.format_exc())
|
315 |
+
|
316 |
+
def get_navigation_info(self) -> Dict[str, Optional[str]]:
|
317 |
+
"""Get current and next sentence information"""
|
318 |
+
if not self.sentences:
|
319 |
+
return {
|
320 |
+
'current': None,
|
321 |
+
'next': None,
|
322 |
+
'progress': "No text loaded"
|
323 |
+
}
|
324 |
+
|
325 |
+
current = self.get_styled_text(self.sentences[self.current_index])
|
326 |
+
next_text = None
|
327 |
+
|
328 |
+
if self.current_index < len(self.sentences) - 1:
|
329 |
+
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
|
330 |
+
|
331 |
+
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
|
332 |
+
|
333 |
return {
|
334 |
+
'current': current,
|
335 |
+
'next': next_text,
|
336 |
+
'progress': progress
|
337 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
def navigate(self, direction: str) -> Dict[str, Optional[str]]:
|
340 |
"""Navigate through sentences"""
|
|
|
403 |
|
404 |
collector = TTSDatasetCollector()
|
405 |
|
406 |
+
|
407 |
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
|
408 |
gr.Markdown("# TTS Dataset Collection Tool")
|
409 |
|
410 |
with gr.Row():
|
411 |
+
# Left column - Configuration and Input
|
412 |
with gr.Column():
|
413 |
+
text_input = gr.Textbox(
|
414 |
+
label="Paste Text",
|
415 |
+
placeholder="Paste your text here...",
|
416 |
+
lines=5
|
417 |
+
)
|
418 |
file_input = gr.File(
|
419 |
+
label="Or Upload Text File (.txt)",
|
420 |
file_types=[".txt"]
|
421 |
)
|
422 |
speaker_id = gr.Textbox(
|
|
|
474 |
value={}
|
475 |
)
|
476 |
|
477 |
+
def process_pasted_text(text):
|
478 |
+
"""Handle pasted text input"""
|
479 |
+
if not text:
|
480 |
+
return {
|
481 |
+
current_text: "",
|
482 |
+
next_text: "",
|
483 |
+
progress: "",
|
484 |
+
status: "⚠️ No text provided",
|
485 |
+
dataset_info: collector.get_dataset_statistics()
|
486 |
+
}
|
487 |
+
|
488 |
+
success, msg = collector.process_text(text)
|
489 |
+
if not success:
|
490 |
+
return {
|
491 |
+
current_text: "",
|
492 |
+
next_text: "",
|
493 |
+
progress: "",
|
494 |
+
status: f"❌ {msg}",
|
495 |
+
dataset_info: collector.get_dataset_statistics()
|
496 |
+
}
|
497 |
+
|
498 |
+
nav_info = collector.get_navigation_info()
|
499 |
+
return {
|
500 |
+
current_text: nav_info['current'],
|
501 |
+
next_text: nav_info['next'],
|
502 |
+
progress: nav_info['progress'],
|
503 |
+
status: f"✅ {msg}",
|
504 |
+
dataset_info: collector.get_dataset_statistics()
|
505 |
+
}
|
506 |
+
|
507 |
def update_font(font_style):
|
508 |
"""Update font and refresh display"""
|
509 |
success, msg = collector.set_font(font_style)
|
|
|
584 |
}
|
585 |
|
586 |
# Event handlers
|
587 |
+
text_input.change(
|
588 |
+
process_pasted_text,
|
589 |
+
inputs=[text_input],
|
590 |
+
outputs=[current_text, next_text, progress, status, dataset_info]
|
591 |
+
)
|
592 |
+
|
593 |
file_input.upload(
|
594 |
load_file,
|
595 |
inputs=[file_input],
|
|
|
622 |
dataset_info.value = collector.get_dataset_statistics()
|
623 |
|
624 |
return interface
|
625 |
+
|
626 |
if __name__ == "__main__":
|
627 |
try:
|
628 |
# Set up any required environment variables
|