Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
"""
|
2 |
-
TTS Dataset Collection Tool with
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
import json
|
7 |
import nltk
|
8 |
import gradio as gr
|
|
|
9 |
from datetime import datetime
|
10 |
from pathlib import Path
|
11 |
-
import shutil
|
12 |
import logging
|
13 |
-
from typing import Dict,
|
14 |
import traceback
|
|
|
|
|
15 |
|
16 |
# Download NLTK data during initialization
|
17 |
try:
|
@@ -43,12 +45,12 @@ logger = logging.getLogger(__name__)
|
|
43 |
FONT_STYLES = {
|
44 |
"english_serif": {
|
45 |
"name": "Times New Roman",
|
46 |
-
"family": "
|
47 |
"css": "font-family: 'Times New Roman', serif;"
|
48 |
},
|
49 |
"english_sans": {
|
50 |
"name": "Arial",
|
51 |
-
"family": "
|
52 |
"css": "font-family: Arial, sans-serif;"
|
53 |
},
|
54 |
"nastaliq": {
|
@@ -66,80 +68,82 @@ FONT_STYLES = {
|
|
66 |
|
67 |
class TTSDatasetCollector:
|
68 |
"""Manages TTS dataset collection and organization with enhanced features"""
|
69 |
-
|
70 |
def __init__(self):
|
71 |
"""Initialize the TTS Dataset Collector"""
|
72 |
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
|
|
|
73 |
self.sentences = []
|
74 |
self.current_index = 0
|
75 |
self.current_font = "english_serif"
|
|
|
76 |
self.setup_directories()
|
77 |
-
|
78 |
# Ensure NLTK data is downloaded
|
79 |
try:
|
80 |
nltk.data.find('tokenizers/punkt')
|
81 |
except LookupError:
|
82 |
nltk.download('punkt', quiet=True)
|
83 |
-
|
84 |
logger.info("TTS Dataset Collector initialized")
|
85 |
-
|
86 |
def setup_directories(self) -> None:
|
87 |
"""Create necessary directory structure with logging"""
|
88 |
try:
|
89 |
# Create main dataset directory
|
90 |
-
self.root_path.mkdir(exist_ok=True)
|
91 |
-
|
92 |
# Create subdirectories
|
93 |
for subdir in ['audio', 'transcriptions', 'metadata', 'fonts']:
|
94 |
-
(self.root_path / subdir).mkdir(exist_ok=True)
|
95 |
-
|
96 |
# Initialize log file
|
97 |
log_file = self.root_path / 'dataset_log.txt'
|
98 |
if not log_file.exists():
|
99 |
with open(log_file, 'w', encoding='utf-8') as f:
|
100 |
f.write(f"Dataset collection initialized on {datetime.now().isoformat()}\n")
|
101 |
-
|
102 |
logger.info("Directory structure created successfully")
|
103 |
-
|
104 |
except Exception as e:
|
105 |
logger.error(f"Failed to create directory structure: {str(e)}")
|
106 |
logger.error(traceback.format_exc())
|
107 |
raise RuntimeError("Failed to initialize directory structure")
|
108 |
-
|
109 |
def log_operation(self, message: str, level: str = "info") -> None:
|
110 |
"""Log operations with timestamp and level"""
|
111 |
try:
|
112 |
log_file = self.root_path / 'dataset_log.txt'
|
113 |
timestamp = datetime.now().isoformat()
|
114 |
-
|
115 |
with open(log_file, 'a', encoding='utf-8') as f:
|
116 |
f.write(f"[{timestamp}] [{level.upper()}] {message}\n")
|
117 |
-
|
118 |
if level.lower() == "error":
|
119 |
logger.error(message)
|
120 |
else:
|
121 |
logger.info(message)
|
122 |
-
|
123 |
except Exception as e:
|
124 |
logger.error(f"Failed to log operation: {str(e)}")
|
125 |
-
|
126 |
def process_text(self, text: str) -> Tuple[bool, str]:
|
127 |
"""Process pasted or loaded text with error handling"""
|
128 |
try:
|
129 |
if not text.strip():
|
130 |
return False, "Text is empty"
|
131 |
-
|
132 |
# Simple sentence splitting as fallback
|
133 |
def simple_split_sentences(text):
|
134 |
# Split on common sentence endings
|
135 |
sentences = []
|
136 |
current = []
|
137 |
-
|
138 |
for line in text.split('\n'):
|
139 |
line = line.strip()
|
140 |
if not line:
|
141 |
continue
|
142 |
-
|
143 |
# Split on common sentence endings
|
144 |
parts = line.replace('!', '.').replace('?', '.').split('.')
|
145 |
for part in parts:
|
@@ -148,12 +152,12 @@ class TTSDatasetCollector:
|
|
148 |
current.append(part)
|
149 |
sentences.append(' '.join(current))
|
150 |
current = []
|
151 |
-
|
152 |
if current:
|
153 |
sentences.append(' '.join(current))
|
154 |
-
|
155 |
return [s.strip() for s in sentences if s.strip()]
|
156 |
-
|
157 |
try:
|
158 |
# Try NLTK first
|
159 |
self.sentences = nltk.sent_tokenize(text.strip())
|
@@ -161,16 +165,16 @@ class TTSDatasetCollector:
|
|
161 |
logger.warning(f"NLTK tokenization failed, falling back to simple splitting: {str(e)}")
|
162 |
# Fallback to simple splitting
|
163 |
self.sentences = simple_split_sentences(text.strip())
|
164 |
-
|
165 |
if not self.sentences:
|
166 |
return False, "No valid sentences found in text"
|
167 |
-
|
168 |
self.current_index = 0
|
169 |
-
|
170 |
# Log success
|
171 |
self.log_operation(f"Processed text with {len(self.sentences)} sentences")
|
172 |
return True, f"Successfully loaded {len(self.sentences)} sentences"
|
173 |
-
|
174 |
except Exception as e:
|
175 |
error_msg = f"Error processing text: {str(e)}"
|
176 |
self.log_operation(error_msg, "error")
|
@@ -181,17 +185,17 @@ class TTSDatasetCollector:
|
|
181 |
"""Process and load text file with enhanced error handling"""
|
182 |
if not file:
|
183 |
return False, "No file provided"
|
184 |
-
|
185 |
try:
|
186 |
# Validate file extension
|
187 |
if not file.name.endswith('.txt'):
|
188 |
return False, "Only .txt files are supported"
|
189 |
-
|
190 |
with open(file.name, 'r', encoding='utf-8') as f:
|
191 |
text = f.read()
|
192 |
-
|
193 |
return self.process_text(text)
|
194 |
-
|
195 |
except UnicodeDecodeError:
|
196 |
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
|
197 |
self.log_operation(error_msg, "error")
|
@@ -209,55 +213,111 @@ class TTSDatasetCollector:
|
|
209 |
|
210 |
def set_font(self, font_style: str) -> Tuple[bool, str]:
|
211 |
"""Set the current font style"""
|
212 |
-
if font_style not in FONT_STYLES:
|
213 |
-
return False, f"Invalid font style. Available styles: {', '.join(FONT_STYLES.keys())}"
|
214 |
self.current_font = font_style
|
215 |
return True, f"Font style set to {font_style}"
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
"""Generate unique filenames for audio and text files"""
|
|
|
221 |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
return f"{base_name}.wav", f"{base_name}.txt"
|
225 |
|
226 |
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str]:
|
227 |
"""Save recording with enhanced error handling and logging"""
|
228 |
if not all([audio_file, speaker_id, dataset_name]):
|
229 |
missing = []
|
230 |
-
if not audio_file:
|
231 |
-
|
232 |
-
if not
|
|
|
|
|
|
|
233 |
return False, f"Missing required information: {', '.join(missing)}"
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
try:
|
236 |
# Validate inputs
|
237 |
if not speaker_id.strip().isalnum():
|
238 |
return False, "Speaker ID must contain only letters and numbers"
|
239 |
-
|
240 |
if not dataset_name.strip().isalnum():
|
241 |
return False, "Dataset name must contain only letters and numbers"
|
242 |
-
|
|
|
|
|
|
|
243 |
# Generate filenames
|
244 |
-
audio_name, text_name = self.generate_filenames(dataset_name, speaker_id)
|
245 |
-
|
246 |
# Create speaker directories
|
247 |
audio_dir = self.root_path / 'audio' / speaker_id
|
248 |
text_dir = self.root_path / 'transcriptions' / speaker_id
|
249 |
-
audio_dir.mkdir(exist_ok=True)
|
250 |
-
text_dir.mkdir(exist_ok=True)
|
251 |
-
|
252 |
# Save audio file
|
253 |
audio_path = audio_dir / audio_name
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
# Save transcription
|
257 |
text_path = text_dir / text_name
|
258 |
self.save_transcription(
|
259 |
text_path,
|
260 |
-
|
261 |
{
|
262 |
'speaker_id': speaker_id,
|
263 |
'dataset_name': dataset_name,
|
@@ -266,24 +326,24 @@ class TTSDatasetCollector:
|
|
266 |
'font_style': self.current_font
|
267 |
}
|
268 |
)
|
269 |
-
|
270 |
# Update metadata
|
271 |
self.update_metadata(speaker_id, dataset_name)
|
272 |
-
|
273 |
# Log success
|
274 |
self.log_operation(
|
275 |
f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
|
276 |
f"Audio={audio_name}, Text={text_name}"
|
277 |
)
|
278 |
-
|
279 |
return True, f"Recording saved successfully as {audio_name}"
|
280 |
-
|
281 |
except Exception as e:
|
282 |
error_msg = f"Error saving recording: {str(e)}"
|
283 |
self.log_operation(error_msg, "error")
|
284 |
logger.error(traceback.format_exc())
|
285 |
return False, error_msg
|
286 |
-
|
287 |
def save_transcription(self, file_path: Path, text: str, metadata: Dict) -> None:
|
288 |
"""Save transcription with metadata"""
|
289 |
content = f"""[METADATA]
|
@@ -298,60 +358,64 @@ Font_Style: {metadata['font_style']}
|
|
298 |
"""
|
299 |
with open(file_path, 'w', encoding='utf-8') as f:
|
300 |
f.write(content)
|
301 |
-
|
302 |
def update_metadata(self, speaker_id: str, dataset_name: str) -> None:
|
303 |
"""Update dataset metadata with error handling"""
|
304 |
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
|
305 |
-
|
306 |
try:
|
307 |
if metadata_file.exists():
|
308 |
with open(metadata_file, 'r') as f:
|
309 |
metadata = json.load(f)
|
310 |
else:
|
311 |
metadata = {'speakers': {}, 'last_updated': None}
|
312 |
-
|
313 |
# Update speaker data
|
314 |
if speaker_id not in metadata['speakers']:
|
315 |
metadata['speakers'][speaker_id] = {
|
316 |
'total_recordings': 0,
|
317 |
'datasets': {}
|
318 |
}
|
319 |
-
|
320 |
if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
|
321 |
metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
|
322 |
'recordings': 0,
|
323 |
'sentences': len(self.sentences),
|
|
|
324 |
'first_recording': datetime.now().isoformat(),
|
325 |
'last_recording': None,
|
326 |
'font_styles_used': []
|
327 |
}
|
328 |
-
|
329 |
# Update counts and timestamps
|
330 |
metadata['speakers'][speaker_id]['total_recordings'] += 1
|
331 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
|
332 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
|
333 |
datetime.now().isoformat()
|
334 |
-
|
|
|
|
|
|
|
|
|
335 |
# Update font styles
|
336 |
if self.current_font not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used']:
|
337 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used'].append(
|
338 |
self.current_font
|
339 |
)
|
340 |
-
|
341 |
metadata['last_updated'] = datetime.now().isoformat()
|
342 |
-
|
343 |
# Save updated metadata
|
344 |
with open(metadata_file, 'w') as f:
|
345 |
json.dump(metadata, f, indent=2)
|
346 |
-
|
347 |
self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")
|
348 |
-
|
349 |
except Exception as e:
|
350 |
error_msg = f"Error updating metadata: {str(e)}"
|
351 |
self.log_operation(error_msg, "error")
|
352 |
logger.error(traceback.format_exc())
|
353 |
-
|
354 |
-
# Add these methods to the TTSDatasetCollector class
|
355 |
def get_navigation_info(self) -> Dict[str, Optional[str]]:
|
356 |
"""Get current and next sentence information"""
|
357 |
if not self.sentences:
|
@@ -360,15 +424,15 @@ Font_Style: {metadata['font_style']}
|
|
360 |
'next': None,
|
361 |
'progress': "No text loaded"
|
362 |
}
|
363 |
-
|
364 |
current = self.get_styled_text(self.sentences[self.current_index])
|
365 |
next_text = None
|
366 |
-
|
367 |
if self.current_index < len(self.sentences) - 1:
|
368 |
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
|
369 |
-
|
370 |
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
|
371 |
-
|
372 |
return {
|
373 |
'current': current,
|
374 |
'next': next_text,
|
@@ -384,15 +448,15 @@ Font_Style: {metadata['font_style']}
|
|
384 |
'progress': "No text loaded",
|
385 |
'status': "⚠️ Please load a text file first"
|
386 |
}
|
387 |
-
|
388 |
if direction == "next" and self.current_index < len(self.sentences) - 1:
|
389 |
self.current_index += 1
|
390 |
elif direction == "prev" and self.current_index > 0:
|
391 |
self.current_index -= 1
|
392 |
-
|
393 |
nav_info = self.get_navigation_info()
|
394 |
nav_info['status'] = "✅ Navigation successful"
|
395 |
-
|
396 |
return nav_info
|
397 |
|
398 |
def get_dataset_statistics(self) -> Dict:
|
@@ -401,18 +465,47 @@ Font_Style: {metadata['font_style']}
|
|
401 |
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
|
402 |
if not metadata_file.exists():
|
403 |
return {}
|
404 |
-
|
405 |
with open(metadata_file, 'r') as f:
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
except Exception as e:
|
408 |
logger.error(f"Error reading dataset statistics: {str(e)}")
|
409 |
return {}
|
410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
411 |
|
412 |
-
# Then create the interface function outside the class
|
413 |
def create_interface():
|
414 |
"""Create Gradio interface with enhanced features"""
|
415 |
-
|
|
|
|
|
416 |
# Create custom CSS for fonts
|
417 |
custom_css = """
|
418 |
.gradio-container {
|
@@ -431,22 +524,24 @@ def create_interface():
|
|
431 |
min-height: 100px !important;
|
432 |
}
|
433 |
"""
|
434 |
-
|
435 |
# Add font-face declarations
|
|
|
436 |
for font_style, font_info in FONT_STYLES.items():
|
437 |
-
if font_style in ['nastaliq', 'naskh']:
|
438 |
-
|
|
|
439 |
@font-face {{
|
440 |
font-family: '{font_info["family"]}';
|
441 |
-
src: url('fonts/{
|
442 |
}}
|
443 |
"""
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
|
448 |
gr.Markdown("# TTS Dataset Collection Tool")
|
449 |
-
|
450 |
with gr.Row():
|
451 |
# Left column - Configuration and Input
|
452 |
with gr.Column():
|
@@ -472,48 +567,54 @@ def create_interface():
|
|
472 |
value="english_serif",
|
473 |
label="Select Font Style"
|
474 |
)
|
475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
# Right column - Recording
|
477 |
with gr.Column():
|
478 |
current_text = gr.HTML(
|
479 |
label="Current Sentence",
|
480 |
elem_classes=["sentence-display"]
|
481 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
audio_recorder = gr.Audio(
|
483 |
label="Record Audio",
|
484 |
type="filepath",
|
485 |
elem_classes=["record-button"]
|
486 |
)
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
prev_btn = gr.Button("Previous", variant="secondary")
|
495 |
-
next_btn = gr.Button("Next", variant="primary")
|
496 |
-
save_btn = gr.Button("Save Recording", variant="primary", elem_classes=["record-button"])
|
497 |
-
|
498 |
-
# Status and Progress
|
499 |
-
with gr.Row():
|
500 |
-
progress = gr.Textbox(
|
501 |
-
label="Progress",
|
502 |
-
interactive=False
|
503 |
-
)
|
504 |
status = gr.Textbox(
|
505 |
label="Status",
|
506 |
interactive=False,
|
507 |
max_lines=3
|
508 |
)
|
509 |
-
|
510 |
-
# Dataset Info
|
511 |
with gr.Row():
|
512 |
dataset_info = gr.JSON(
|
513 |
label="Dataset Statistics",
|
514 |
value={}
|
515 |
)
|
516 |
-
|
|
|
|
|
|
|
|
|
517 |
def process_pasted_text(text):
|
518 |
"""Handle pasted text input"""
|
519 |
if not text:
|
@@ -534,29 +635,30 @@ def create_interface():
|
|
534 |
status: f"❌ {msg}",
|
535 |
dataset_info: collector.get_dataset_statistics()
|
536 |
}
|
537 |
-
|
538 |
nav_info = collector.get_navigation_info()
|
|
|
539 |
return {
|
540 |
current_text: nav_info['current'],
|
541 |
next_text: nav_info['next'],
|
542 |
-
progress:
|
543 |
status: f"✅ {msg}",
|
544 |
dataset_info: collector.get_dataset_statistics()
|
545 |
}
|
546 |
-
|
547 |
def update_font(font_style):
|
548 |
"""Update font and refresh display"""
|
549 |
success, msg = collector.set_font(font_style)
|
550 |
if not success:
|
551 |
return {status: msg}
|
552 |
-
|
553 |
nav_info = collector.get_navigation_info()
|
554 |
return {
|
555 |
current_text: nav_info['current'],
|
556 |
next_text: nav_info['next'],
|
557 |
status: f"Font updated to {font_style}"
|
558 |
}
|
559 |
-
|
560 |
def load_file(file):
|
561 |
"""Handle file loading with enhanced error reporting"""
|
562 |
if not file:
|
@@ -577,98 +679,130 @@ def create_interface():
|
|
577 |
status: f"❌ {msg}",
|
578 |
dataset_info: collector.get_dataset_statistics()
|
579 |
}
|
580 |
-
|
581 |
nav_info = collector.get_navigation_info()
|
|
|
582 |
return {
|
583 |
current_text: nav_info['current'],
|
584 |
next_text: nav_info['next'],
|
585 |
-
progress:
|
586 |
status: f"✅ {msg}",
|
587 |
dataset_info: collector.get_dataset_statistics()
|
588 |
}
|
589 |
-
|
590 |
def save_current_recording(audio_file, speaker_id_value, dataset_name_value):
|
591 |
"""Handle saving the current recording"""
|
592 |
if not audio_file:
|
593 |
-
return {
|
594 |
-
|
|
|
|
|
|
|
|
|
595 |
success, msg = collector.save_recording(
|
596 |
audio_file, speaker_id_value, dataset_name_value
|
597 |
)
|
598 |
-
|
599 |
if not success:
|
600 |
return {
|
601 |
status: f"❌ {msg}",
|
602 |
-
dataset_info: collector.get_dataset_statistics()
|
|
|
|
|
603 |
}
|
604 |
-
|
|
|
|
|
|
|
|
|
605 |
# Auto-advance to next sentence after successful save
|
606 |
nav_info = collector.navigate("next")
|
607 |
-
|
608 |
return {
|
609 |
current_text: nav_info['current'],
|
610 |
next_text: nav_info['next'],
|
611 |
-
progress:
|
612 |
status: f"✅ {msg}",
|
613 |
-
dataset_info: collector.get_dataset_statistics()
|
|
|
|
|
614 |
}
|
615 |
-
|
616 |
def navigate_sentences(direction):
|
617 |
"""Handle navigation between sentences"""
|
618 |
nav_info = collector.navigate(direction)
|
|
|
619 |
return {
|
620 |
current_text: nav_info['current'],
|
621 |
next_text: nav_info['next'],
|
622 |
-
progress:
|
623 |
status: nav_info['status']
|
624 |
}
|
625 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
626 |
# Event handlers
|
627 |
text_input.change(
|
628 |
process_pasted_text,
|
629 |
inputs=[text_input],
|
630 |
outputs=[current_text, next_text, progress, status, dataset_info]
|
631 |
)
|
632 |
-
|
633 |
file_input.upload(
|
634 |
load_file,
|
635 |
inputs=[file_input],
|
636 |
outputs=[current_text, next_text, progress, status, dataset_info]
|
637 |
)
|
638 |
-
|
639 |
font_select.change(
|
640 |
update_font,
|
641 |
inputs=[font_select],
|
642 |
outputs=[current_text, next_text, status]
|
643 |
)
|
644 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
645 |
save_btn.click(
|
646 |
save_current_recording,
|
647 |
inputs=[audio_recorder, speaker_id, dataset_name],
|
648 |
-
outputs=[current_text, next_text, progress, status, dataset_info]
|
649 |
)
|
650 |
-
|
651 |
prev_btn.click(
|
652 |
lambda: navigate_sentences("prev"),
|
653 |
outputs=[current_text, next_text, progress, status]
|
654 |
)
|
655 |
-
|
656 |
next_btn.click(
|
657 |
lambda: navigate_sentences("next"),
|
658 |
outputs=[current_text, next_text, progress, status]
|
659 |
)
|
660 |
-
|
661 |
# Initialize dataset info
|
662 |
dataset_info.value = collector.get_dataset_statistics()
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
if __name__ == "__main__":
|
667 |
try:
|
668 |
# Set up any required environment variables
|
669 |
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
|
670 |
os.environ["GRADIO_SERVER_PORT"] = "7860"
|
671 |
-
|
672 |
# Create and launch the interface
|
673 |
interface = create_interface()
|
674 |
interface.queue() # Enable queuing for better handling of concurrent users
|
|
|
1 |
"""
|
2 |
+
TTS Dataset Collection Tool with Custom Fonts and Enhanced Features
|
3 |
"""
|
4 |
|
5 |
import os
|
6 |
import json
|
7 |
import nltk
|
8 |
import gradio as gr
|
9 |
+
import uuid
|
10 |
from datetime import datetime
|
11 |
from pathlib import Path
|
|
|
12 |
import logging
|
13 |
+
from typing import Dict, Tuple, Optional
|
14 |
import traceback
|
15 |
+
import soundfile as sf
|
16 |
+
import re
|
17 |
|
18 |
# Download NLTK data during initialization
|
19 |
try:
|
|
|
45 |
FONT_STYLES = {
|
46 |
"english_serif": {
|
47 |
"name": "Times New Roman",
|
48 |
+
"family": "Times New Roman",
|
49 |
"css": "font-family: 'Times New Roman', serif;"
|
50 |
},
|
51 |
"english_sans": {
|
52 |
"name": "Arial",
|
53 |
+
"family": "Arial",
|
54 |
"css": "font-family: Arial, sans-serif;"
|
55 |
},
|
56 |
"nastaliq": {
|
|
|
68 |
|
69 |
class TTSDatasetCollector:
|
70 |
"""Manages TTS dataset collection and organization with enhanced features"""
|
71 |
+
|
72 |
def __init__(self):
|
73 |
"""Initialize the TTS Dataset Collector"""
|
74 |
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
|
75 |
+
self.fonts_path = self.root_path / "fonts"
|
76 |
self.sentences = []
|
77 |
self.current_index = 0
|
78 |
self.current_font = "english_serif"
|
79 |
+
self.custom_fonts = {}
|
80 |
self.setup_directories()
|
81 |
+
|
82 |
# Ensure NLTK data is downloaded
|
83 |
try:
|
84 |
nltk.data.find('tokenizers/punkt')
|
85 |
except LookupError:
|
86 |
nltk.download('punkt', quiet=True)
|
87 |
+
|
88 |
logger.info("TTS Dataset Collector initialized")
|
89 |
+
|
90 |
def setup_directories(self) -> None:
|
91 |
"""Create necessary directory structure with logging"""
|
92 |
try:
|
93 |
# Create main dataset directory
|
94 |
+
self.root_path.mkdir(parents=True, exist_ok=True)
|
95 |
+
|
96 |
# Create subdirectories
|
97 |
for subdir in ['audio', 'transcriptions', 'metadata', 'fonts']:
|
98 |
+
(self.root_path / subdir).mkdir(parents=True, exist_ok=True)
|
99 |
+
|
100 |
# Initialize log file
|
101 |
log_file = self.root_path / 'dataset_log.txt'
|
102 |
if not log_file.exists():
|
103 |
with open(log_file, 'w', encoding='utf-8') as f:
|
104 |
f.write(f"Dataset collection initialized on {datetime.now().isoformat()}\n")
|
105 |
+
|
106 |
logger.info("Directory structure created successfully")
|
107 |
+
|
108 |
except Exception as e:
|
109 |
logger.error(f"Failed to create directory structure: {str(e)}")
|
110 |
logger.error(traceback.format_exc())
|
111 |
raise RuntimeError("Failed to initialize directory structure")
|
112 |
+
|
113 |
def log_operation(self, message: str, level: str = "info") -> None:
|
114 |
"""Log operations with timestamp and level"""
|
115 |
try:
|
116 |
log_file = self.root_path / 'dataset_log.txt'
|
117 |
timestamp = datetime.now().isoformat()
|
118 |
+
|
119 |
with open(log_file, 'a', encoding='utf-8') as f:
|
120 |
f.write(f"[{timestamp}] [{level.upper()}] {message}\n")
|
121 |
+
|
122 |
if level.lower() == "error":
|
123 |
logger.error(message)
|
124 |
else:
|
125 |
logger.info(message)
|
126 |
+
|
127 |
except Exception as e:
|
128 |
logger.error(f"Failed to log operation: {str(e)}")
|
129 |
+
|
130 |
def process_text(self, text: str) -> Tuple[bool, str]:
|
131 |
"""Process pasted or loaded text with error handling"""
|
132 |
try:
|
133 |
if not text.strip():
|
134 |
return False, "Text is empty"
|
135 |
+
|
136 |
# Simple sentence splitting as fallback
|
137 |
def simple_split_sentences(text):
|
138 |
# Split on common sentence endings
|
139 |
sentences = []
|
140 |
current = []
|
141 |
+
|
142 |
for line in text.split('\n'):
|
143 |
line = line.strip()
|
144 |
if not line:
|
145 |
continue
|
146 |
+
|
147 |
# Split on common sentence endings
|
148 |
parts = line.replace('!', '.').replace('?', '.').split('.')
|
149 |
for part in parts:
|
|
|
152 |
current.append(part)
|
153 |
sentences.append(' '.join(current))
|
154 |
current = []
|
155 |
+
|
156 |
if current:
|
157 |
sentences.append(' '.join(current))
|
158 |
+
|
159 |
return [s.strip() for s in sentences if s.strip()]
|
160 |
+
|
161 |
try:
|
162 |
# Try NLTK first
|
163 |
self.sentences = nltk.sent_tokenize(text.strip())
|
|
|
165 |
logger.warning(f"NLTK tokenization failed, falling back to simple splitting: {str(e)}")
|
166 |
# Fallback to simple splitting
|
167 |
self.sentences = simple_split_sentences(text.strip())
|
168 |
+
|
169 |
if not self.sentences:
|
170 |
return False, "No valid sentences found in text"
|
171 |
+
|
172 |
self.current_index = 0
|
173 |
+
|
174 |
# Log success
|
175 |
self.log_operation(f"Processed text with {len(self.sentences)} sentences")
|
176 |
return True, f"Successfully loaded {len(self.sentences)} sentences"
|
177 |
+
|
178 |
except Exception as e:
|
179 |
error_msg = f"Error processing text: {str(e)}"
|
180 |
self.log_operation(error_msg, "error")
|
|
|
185 |
"""Process and load text file with enhanced error handling"""
|
186 |
if not file:
|
187 |
return False, "No file provided"
|
188 |
+
|
189 |
try:
|
190 |
# Validate file extension
|
191 |
if not file.name.endswith('.txt'):
|
192 |
return False, "Only .txt files are supported"
|
193 |
+
|
194 |
with open(file.name, 'r', encoding='utf-8') as f:
|
195 |
text = f.read()
|
196 |
+
|
197 |
return self.process_text(text)
|
198 |
+
|
199 |
except UnicodeDecodeError:
|
200 |
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
|
201 |
self.log_operation(error_msg, "error")
|
|
|
213 |
|
214 |
def set_font(self, font_style: str) -> Tuple[bool, str]:
|
215 |
"""Set the current font style"""
|
216 |
+
if font_style not in FONT_STYLES and font_style not in self.custom_fonts:
|
217 |
+
return False, f"Invalid font style. Available styles: {', '.join(FONT_STYLES.keys()) + ', ' + ', '.join(self.custom_fonts.keys())}"
|
218 |
self.current_font = font_style
|
219 |
return True, f"Font style set to {font_style}"
|
220 |
+
|
221 |
+
def add_custom_font(self, font_file) -> Tuple[bool, str]:
|
222 |
+
"""Add a custom font from the uploaded TTF file"""
|
223 |
+
try:
|
224 |
+
if not font_file.name.endswith('.ttf'):
|
225 |
+
return False, "Only .ttf font files are supported"
|
226 |
+
|
227 |
+
# Generate a unique font family name
|
228 |
+
font_family = f"font_{uuid.uuid4().hex[:8]}"
|
229 |
+
font_filename = font_family + '.ttf'
|
230 |
+
font_dest = self.fonts_path / font_filename
|
231 |
+
|
232 |
+
# Save the font file
|
233 |
+
with open(font_dest, 'wb') as f:
|
234 |
+
f.write(font_file.read())
|
235 |
+
|
236 |
+
# Add to custom fonts
|
237 |
+
self.custom_fonts[font_family] = {
|
238 |
+
'name': font_file.name,
|
239 |
+
'family': font_family,
|
240 |
+
'css': f"font-family: '{font_family}', serif;"
|
241 |
+
}
|
242 |
+
|
243 |
+
# Update the FONT_STYLES with the custom font
|
244 |
+
FONT_STYLES[font_family] = self.custom_fonts[font_family]
|
245 |
+
|
246 |
+
# Log success
|
247 |
+
self.log_operation(f"Added custom font: {font_file.name} as {font_family}")
|
248 |
+
return True, f"Custom font '{font_file.name}' added successfully"
|
249 |
+
|
250 |
+
except Exception as e:
|
251 |
+
error_msg = f"Error adding custom font: {str(e)}"
|
252 |
+
self.log_operation(error_msg, "error")
|
253 |
+
logger.error(traceback.format_exc())
|
254 |
+
return False, error_msg
|
255 |
+
|
256 |
+
def generate_filenames(self, dataset_name: str, speaker_id: str, sentence_text: str) -> Tuple[str, str]:
|
257 |
"""Generate unique filenames for audio and text files"""
|
258 |
+
line_number = self.current_index + 1
|
259 |
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
260 |
+
# Sanitize strings for filenames
|
261 |
+
def sanitize_filename(s):
|
262 |
+
return re.sub(r'[^a-zA-Z0-9_-]', '_', s)[:50]
|
263 |
+
|
264 |
+
dataset_name_safe = sanitize_filename(dataset_name)
|
265 |
+
speaker_id_safe = sanitize_filename(speaker_id)
|
266 |
+
sentence_excerpt = sanitize_filename(sentence_text[:20])
|
267 |
+
base_name = f"{dataset_name_safe}_{speaker_id_safe}_line{line_number}_{sentence_excerpt}_{timestamp}"
|
268 |
return f"{base_name}.wav", f"{base_name}.txt"
|
269 |
|
270 |
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str]:
|
271 |
"""Save recording with enhanced error handling and logging"""
|
272 |
if not all([audio_file, speaker_id, dataset_name]):
|
273 |
missing = []
|
274 |
+
if not audio_file:
|
275 |
+
missing.append("audio recording")
|
276 |
+
if not speaker_id:
|
277 |
+
missing.append("speaker ID")
|
278 |
+
if not dataset_name:
|
279 |
+
missing.append("dataset name")
|
280 |
return False, f"Missing required information: {', '.join(missing)}"
|
281 |
+
|
282 |
+
# Check if sentences have been loaded
|
283 |
+
if not self.sentences:
|
284 |
+
return False, "No sentences have been loaded. Please load text before saving recordings."
|
285 |
+
if self.current_index >= len(self.sentences):
|
286 |
+
return False, "Current sentence index is out of range."
|
287 |
+
|
288 |
try:
|
289 |
# Validate inputs
|
290 |
if not speaker_id.strip().isalnum():
|
291 |
return False, "Speaker ID must contain only letters and numbers"
|
|
|
292 |
if not dataset_name.strip().isalnum():
|
293 |
return False, "Dataset name must contain only letters and numbers"
|
294 |
+
|
295 |
+
# Get current sentence text
|
296 |
+
sentence_text = self.sentences[self.current_index]
|
297 |
+
|
298 |
# Generate filenames
|
299 |
+
audio_name, text_name = self.generate_filenames(dataset_name, speaker_id, sentence_text)
|
300 |
+
|
301 |
# Create speaker directories
|
302 |
audio_dir = self.root_path / 'audio' / speaker_id
|
303 |
text_dir = self.root_path / 'transcriptions' / speaker_id
|
304 |
+
audio_dir.mkdir(parents=True, exist_ok=True)
|
305 |
+
text_dir.mkdir(parents=True, exist_ok=True)
|
306 |
+
|
307 |
# Save audio file
|
308 |
audio_path = audio_dir / audio_name
|
309 |
+
|
310 |
+
# Read the audio file using soundfile
|
311 |
+
audio_data, sampling_rate = sf.read(audio_file)
|
312 |
+
|
313 |
+
# Save audio file
|
314 |
+
sf.write(str(audio_path), audio_data, sampling_rate)
|
315 |
+
|
316 |
# Save transcription
|
317 |
text_path = text_dir / text_name
|
318 |
self.save_transcription(
|
319 |
text_path,
|
320 |
+
sentence_text,
|
321 |
{
|
322 |
'speaker_id': speaker_id,
|
323 |
'dataset_name': dataset_name,
|
|
|
326 |
'font_style': self.current_font
|
327 |
}
|
328 |
)
|
329 |
+
|
330 |
# Update metadata
|
331 |
self.update_metadata(speaker_id, dataset_name)
|
332 |
+
|
333 |
# Log success
|
334 |
self.log_operation(
|
335 |
f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
|
336 |
f"Audio={audio_name}, Text={text_name}"
|
337 |
)
|
338 |
+
|
339 |
return True, f"Recording saved successfully as {audio_name}"
|
340 |
+
|
341 |
except Exception as e:
|
342 |
error_msg = f"Error saving recording: {str(e)}"
|
343 |
self.log_operation(error_msg, "error")
|
344 |
logger.error(traceback.format_exc())
|
345 |
return False, error_msg
|
346 |
+
|
347 |
def save_transcription(self, file_path: Path, text: str, metadata: Dict) -> None:
|
348 |
"""Save transcription with metadata"""
|
349 |
content = f"""[METADATA]
|
|
|
358 |
"""
|
359 |
with open(file_path, 'w', encoding='utf-8') as f:
|
360 |
f.write(content)
|
361 |
+
|
362 |
def update_metadata(self, speaker_id: str, dataset_name: str) -> None:
|
363 |
"""Update dataset metadata with error handling"""
|
364 |
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
|
365 |
+
|
366 |
try:
|
367 |
if metadata_file.exists():
|
368 |
with open(metadata_file, 'r') as f:
|
369 |
metadata = json.load(f)
|
370 |
else:
|
371 |
metadata = {'speakers': {}, 'last_updated': None}
|
372 |
+
|
373 |
# Update speaker data
|
374 |
if speaker_id not in metadata['speakers']:
|
375 |
metadata['speakers'][speaker_id] = {
|
376 |
'total_recordings': 0,
|
377 |
'datasets': {}
|
378 |
}
|
379 |
+
|
380 |
if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
|
381 |
metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
|
382 |
'recordings': 0,
|
383 |
'sentences': len(self.sentences),
|
384 |
+
'recorded_sentences': [],
|
385 |
'first_recording': datetime.now().isoformat(),
|
386 |
'last_recording': None,
|
387 |
'font_styles_used': []
|
388 |
}
|
389 |
+
|
390 |
# Update counts and timestamps
|
391 |
metadata['speakers'][speaker_id]['total_recordings'] += 1
|
392 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
|
393 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
|
394 |
datetime.now().isoformat()
|
395 |
+
|
396 |
+
# Add current index to recorded sentences
|
397 |
+
if self.current_index not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences']:
|
398 |
+
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences'].append(self.current_index)
|
399 |
+
|
400 |
# Update font styles
|
401 |
if self.current_font not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used']:
|
402 |
metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used'].append(
|
403 |
self.current_font
|
404 |
)
|
405 |
+
|
406 |
metadata['last_updated'] = datetime.now().isoformat()
|
407 |
+
|
408 |
# Save updated metadata
|
409 |
with open(metadata_file, 'w') as f:
|
410 |
json.dump(metadata, f, indent=2)
|
411 |
+
|
412 |
self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")
|
413 |
+
|
414 |
except Exception as e:
|
415 |
error_msg = f"Error updating metadata: {str(e)}"
|
416 |
self.log_operation(error_msg, "error")
|
417 |
logger.error(traceback.format_exc())
|
418 |
+
|
|
|
419 |
def get_navigation_info(self) -> Dict[str, Optional[str]]:
|
420 |
"""Get current and next sentence information"""
|
421 |
if not self.sentences:
|
|
|
424 |
'next': None,
|
425 |
'progress': "No text loaded"
|
426 |
}
|
427 |
+
|
428 |
current = self.get_styled_text(self.sentences[self.current_index])
|
429 |
next_text = None
|
430 |
+
|
431 |
if self.current_index < len(self.sentences) - 1:
|
432 |
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
|
433 |
+
|
434 |
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
|
435 |
+
|
436 |
return {
|
437 |
'current': current,
|
438 |
'next': next_text,
|
|
|
448 |
'progress': "No text loaded",
|
449 |
'status': "⚠️ Please load a text file first"
|
450 |
}
|
451 |
+
|
452 |
if direction == "next" and self.current_index < len(self.sentences) - 1:
|
453 |
self.current_index += 1
|
454 |
elif direction == "prev" and self.current_index > 0:
|
455 |
self.current_index -= 1
|
456 |
+
|
457 |
nav_info = self.get_navigation_info()
|
458 |
nav_info['status'] = "✅ Navigation successful"
|
459 |
+
|
460 |
return nav_info
|
461 |
|
462 |
def get_dataset_statistics(self) -> Dict:
|
|
|
465 |
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
|
466 |
if not metadata_file.exists():
|
467 |
return {}
|
|
|
468 |
with open(metadata_file, 'r') as f:
|
469 |
+
metadata = json.load(f)
|
470 |
+
# Flatten statistics for display
|
471 |
+
total_sentences = len(self.sentences)
|
472 |
+
recorded = len(set(metadata['speakers'][list(metadata['speakers'].keys())[0]]['datasets'][list(metadata['speakers'][list(metadata['speakers'].keys())[0]]['datasets'].keys())[0]]['recorded_sentences'])) if metadata['speakers'] else 0
|
473 |
+
remaining = total_sentences - recorded
|
474 |
+
stats = {
|
475 |
+
"Total Sentences": total_sentences,
|
476 |
+
"Recorded Sentences": recorded,
|
477 |
+
"Remaining Sentences": remaining,
|
478 |
+
"Last Updated": metadata.get('last_updated', 'N/A')
|
479 |
+
}
|
480 |
+
return stats
|
481 |
except Exception as e:
|
482 |
logger.error(f"Error reading dataset statistics: {str(e)}")
|
483 |
return {}
|
484 |
|
485 |
+
def get_last_audio_path(self, speaker_id: str) -> Optional[str]:
|
486 |
+
"""Get the path to the last saved audio file for downloading"""
|
487 |
+
audio_dir = self.root_path / 'audio' / speaker_id
|
488 |
+
audio_files = sorted(audio_dir.glob('*.wav'), key=lambda f: f.stat().st_mtime, reverse=True)
|
489 |
+
if audio_files:
|
490 |
+
return str(audio_files[0])
|
491 |
+
else:
|
492 |
+
return None
|
493 |
+
|
494 |
+
def get_last_transcript_path(self, speaker_id: str) -> Optional[str]:
|
495 |
+
"""Get the path to the last saved transcription file for downloading"""
|
496 |
+
text_dir = self.root_path / 'transcriptions' / speaker_id
|
497 |
+
text_files = sorted(text_dir.glob('*.txt'), key=lambda f: f.stat().st_mtime, reverse=True)
|
498 |
+
if text_files:
|
499 |
+
return str(text_files[0])
|
500 |
+
else:
|
501 |
+
return None
|
502 |
+
|
503 |
|
|
|
504 |
def create_interface():
|
505 |
"""Create Gradio interface with enhanced features"""
|
506 |
+
|
507 |
+
collector = TTSDatasetCollector()
|
508 |
+
|
509 |
# Create custom CSS for fonts
|
510 |
custom_css = """
|
511 |
.gradio-container {
|
|
|
524 |
min-height: 100px !important;
|
525 |
}
|
526 |
"""
|
527 |
+
|
528 |
# Add font-face declarations
|
529 |
+
font_face_css = ""
|
530 |
for font_style, font_info in FONT_STYLES.items():
|
531 |
+
if font_style in ['nastaliq', 'naskh'] or font_style in collector.custom_fonts:
|
532 |
+
font_file_name = font_info['family'] + '.ttf' if font_style not in collector.custom_fonts else font_info['family'] + '.ttf'
|
533 |
+
font_face_css += f"""
|
534 |
@font-face {{
|
535 |
font-family: '{font_info["family"]}';
|
536 |
+
src: url('fonts/{font_file_name}') format('truetype');
|
537 |
}}
|
538 |
"""
|
539 |
+
|
540 |
+
custom_css += font_face_css
|
541 |
+
|
542 |
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
|
543 |
gr.Markdown("# TTS Dataset Collection Tool")
|
544 |
+
|
545 |
with gr.Row():
|
546 |
# Left column - Configuration and Input
|
547 |
with gr.Column():
|
|
|
567 |
value="english_serif",
|
568 |
label="Select Font Style"
|
569 |
)
|
570 |
+
# Custom font upload
|
571 |
+
font_file_input = gr.File(
|
572 |
+
label="Upload Custom Font (.ttf)",
|
573 |
+
file_types=[".ttf"]
|
574 |
+
)
|
575 |
+
add_font_btn = gr.Button("Add Custom Font")
|
576 |
+
|
577 |
# Right column - Recording
|
578 |
with gr.Column():
|
579 |
current_text = gr.HTML(
|
580 |
label="Current Sentence",
|
581 |
elem_classes=["sentence-display"]
|
582 |
)
|
583 |
+
next_text = gr.HTML(
|
584 |
+
label="Next Sentence",
|
585 |
+
elem_classes=["sentence-display"]
|
586 |
+
)
|
587 |
+
progress = gr.Markdown("")
|
588 |
+
|
589 |
audio_recorder = gr.Audio(
|
590 |
label="Record Audio",
|
591 |
type="filepath",
|
592 |
elem_classes=["record-button"]
|
593 |
)
|
594 |
+
# Controls
|
595 |
+
with gr.Row():
|
596 |
+
prev_btn = gr.Button("Previous", variant="secondary")
|
597 |
+
save_btn = gr.Button("Save Recording", variant="primary", elem_classes=["record-button"])
|
598 |
+
next_btn = gr.Button("Next", variant="primary")
|
599 |
+
|
600 |
+
# Status and Progress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
601 |
status = gr.Textbox(
|
602 |
label="Status",
|
603 |
interactive=False,
|
604 |
max_lines=3
|
605 |
)
|
606 |
+
|
607 |
+
# Dataset Info and Download Links
|
608 |
with gr.Row():
|
609 |
dataset_info = gr.JSON(
|
610 |
label="Dataset Statistics",
|
611 |
value={}
|
612 |
)
|
613 |
+
|
614 |
+
with gr.Row():
|
615 |
+
download_audio = gr.File(label="Download Audio", interactive=False)
|
616 |
+
download_transcript = gr.File(label="Download Transcript", interactive=False)
|
617 |
+
|
618 |
def process_pasted_text(text):
|
619 |
"""Handle pasted text input"""
|
620 |
if not text:
|
|
|
635 |
status: f"❌ {msg}",
|
636 |
dataset_info: collector.get_dataset_statistics()
|
637 |
}
|
638 |
+
|
639 |
nav_info = collector.get_navigation_info()
|
640 |
+
progress_bar = gr.HTML.update(value=f"<progress value='{collector.current_index}' max='{len(collector.sentences)}'></progress>")
|
641 |
return {
|
642 |
current_text: nav_info['current'],
|
643 |
next_text: nav_info['next'],
|
644 |
+
progress: progress_bar,
|
645 |
status: f"✅ {msg}",
|
646 |
dataset_info: collector.get_dataset_statistics()
|
647 |
}
|
648 |
+
|
649 |
def update_font(font_style):
|
650 |
"""Update font and refresh display"""
|
651 |
success, msg = collector.set_font(font_style)
|
652 |
if not success:
|
653 |
return {status: msg}
|
654 |
+
|
655 |
nav_info = collector.get_navigation_info()
|
656 |
return {
|
657 |
current_text: nav_info['current'],
|
658 |
next_text: nav_info['next'],
|
659 |
status: f"Font updated to {font_style}"
|
660 |
}
|
661 |
+
|
662 |
def load_file(file):
|
663 |
"""Handle file loading with enhanced error reporting"""
|
664 |
if not file:
|
|
|
679 |
status: f"❌ {msg}",
|
680 |
dataset_info: collector.get_dataset_statistics()
|
681 |
}
|
682 |
+
|
683 |
nav_info = collector.get_navigation_info()
|
684 |
+
progress_bar = gr.HTML.update(value=f"<progress value='{collector.current_index}' max='{len(collector.sentences)}'></progress>")
|
685 |
return {
|
686 |
current_text: nav_info['current'],
|
687 |
next_text: nav_info['next'],
|
688 |
+
progress: progress_bar,
|
689 |
status: f"✅ {msg}",
|
690 |
dataset_info: collector.get_dataset_statistics()
|
691 |
}
|
692 |
+
|
693 |
def save_current_recording(audio_file, speaker_id_value, dataset_name_value):
|
694 |
"""Handle saving the current recording"""
|
695 |
if not audio_file:
|
696 |
+
return {
|
697 |
+
status: "⚠️ Please record audio first",
|
698 |
+
download_audio: None,
|
699 |
+
download_transcript: None
|
700 |
+
}
|
701 |
+
|
702 |
success, msg = collector.save_recording(
|
703 |
audio_file, speaker_id_value, dataset_name_value
|
704 |
)
|
705 |
+
|
706 |
if not success:
|
707 |
return {
|
708 |
status: f"❌ {msg}",
|
709 |
+
dataset_info: collector.get_dataset_statistics(),
|
710 |
+
download_audio: None,
|
711 |
+
download_transcript: None
|
712 |
}
|
713 |
+
|
714 |
+
# Get paths to the saved files
|
715 |
+
audio_path = collector.get_last_audio_path(speaker_id_value)
|
716 |
+
transcript_path = collector.get_last_transcript_path(speaker_id_value)
|
717 |
+
|
718 |
# Auto-advance to next sentence after successful save
|
719 |
nav_info = collector.navigate("next")
|
720 |
+
progress_bar = gr.HTML.update(value=f"<progress value='{collector.current_index}' max='{len(collector.sentences)}'></progress>")
|
721 |
return {
|
722 |
current_text: nav_info['current'],
|
723 |
next_text: nav_info['next'],
|
724 |
+
progress: progress_bar,
|
725 |
status: f"✅ {msg}",
|
726 |
+
dataset_info: collector.get_dataset_statistics(),
|
727 |
+
download_audio: audio_path,
|
728 |
+
download_transcript: transcript_path
|
729 |
}
|
730 |
+
|
731 |
def navigate_sentences(direction):
|
732 |
"""Handle navigation between sentences"""
|
733 |
nav_info = collector.navigate(direction)
|
734 |
+
progress_bar = gr.HTML.update(value=f"<progress value='{collector.current_index}' max='{len(collector.sentences)}'></progress>")
|
735 |
return {
|
736 |
current_text: nav_info['current'],
|
737 |
next_text: nav_info['next'],
|
738 |
+
progress: progress_bar,
|
739 |
status: nav_info['status']
|
740 |
}
|
741 |
+
|
742 |
+
def add_custom_font(font_file):
|
743 |
+
"""Handle adding a custom font"""
|
744 |
+
if not font_file:
|
745 |
+
return {status: "⚠️ No font file selected"}
|
746 |
+
success, msg = collector.add_custom_font(font_file)
|
747 |
+
if not success:
|
748 |
+
return {status: f"❌ {msg}"}
|
749 |
+
# Update font dropdown
|
750 |
+
font_choices = list(FONT_STYLES.keys())
|
751 |
+
font_select.update(choices=font_choices)
|
752 |
+
return {status: f"✅ {msg}"}
|
753 |
+
|
754 |
# Event handlers
|
755 |
text_input.change(
|
756 |
process_pasted_text,
|
757 |
inputs=[text_input],
|
758 |
outputs=[current_text, next_text, progress, status, dataset_info]
|
759 |
)
|
760 |
+
|
761 |
file_input.upload(
|
762 |
load_file,
|
763 |
inputs=[file_input],
|
764 |
outputs=[current_text, next_text, progress, status, dataset_info]
|
765 |
)
|
766 |
+
|
767 |
font_select.change(
|
768 |
update_font,
|
769 |
inputs=[font_select],
|
770 |
outputs=[current_text, next_text, status]
|
771 |
)
|
772 |
+
|
773 |
+
add_font_btn.click(
|
774 |
+
add_custom_font,
|
775 |
+
inputs=[font_file_input],
|
776 |
+
outputs=[status]
|
777 |
+
)
|
778 |
+
|
779 |
save_btn.click(
|
780 |
save_current_recording,
|
781 |
inputs=[audio_recorder, speaker_id, dataset_name],
|
782 |
+
outputs=[current_text, next_text, progress, status, dataset_info, download_audio, download_transcript]
|
783 |
)
|
784 |
+
|
785 |
prev_btn.click(
|
786 |
lambda: navigate_sentences("prev"),
|
787 |
outputs=[current_text, next_text, progress, status]
|
788 |
)
|
789 |
+
|
790 |
next_btn.click(
|
791 |
lambda: navigate_sentences("next"),
|
792 |
outputs=[current_text, next_text, progress, status]
|
793 |
)
|
794 |
+
|
795 |
# Initialize dataset info
|
796 |
dataset_info.value = collector.get_dataset_statistics()
|
797 |
+
|
798 |
+
return interface
|
799 |
+
|
800 |
if __name__ == "__main__":
|
801 |
try:
|
802 |
# Set up any required environment variables
|
803 |
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
|
804 |
os.environ["GRADIO_SERVER_PORT"] = "7860"
|
805 |
+
|
806 |
# Create and launch the interface
|
807 |
interface = create_interface()
|
808 |
interface.queue() # Enable queuing for better handling of concurrent users
|