Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,12 @@ from huggingface_hub import list_models, list_datasets, list_spaces
|
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
5 |
|
6 |
-
|
7 |
def get_user_stats():
|
8 |
users = {}
|
9 |
for k, fn in zip(['model', 'dataset', 'space'], [list_models, list_datasets, list_spaces]):
|
10 |
for repo in fn(full=True):
|
11 |
if repo.author is None:
|
12 |
continue
|
13 |
-
|
14 |
if repo.author not in users:
|
15 |
users[repo.author] = {
|
16 |
x: 0 for x in [
|
@@ -30,21 +28,18 @@ def get_user_stats():
|
|
30 |
for username, user_stats in users.items():
|
31 |
users[username]['total_likes'] += sum([v for k, v in user_stats.items() if "likes" in k])
|
32 |
users[username]['total_repos'] += sum([v for k, v in user_stats.items() if "num_" in k])
|
33 |
-
|
34 |
for k, v in users.items():
|
35 |
users[k] = dict(users[k])
|
36 |
-
|
37 |
return users
|
38 |
|
39 |
def make_clickable_user(user_id):
|
40 |
link = "https://huggingface.co/" + user_id
|
41 |
-
return f'<a
|
42 |
-
|
43 |
|
44 |
def get_user_stats_df(limit=1000):
|
45 |
users = get_user_stats()
|
46 |
df = pd.DataFrame([{'username': make_clickable_user(k), **v} for k, v in users.items()])
|
47 |
-
df.sort_values(by=["
|
48 |
df.insert(0, "rank", list(range(1, len(df) + 1)))
|
49 |
df = df[
|
50 |
[
|
@@ -65,11 +60,12 @@ def get_user_stats_df(limit=1000):
|
|
65 |
return df
|
66 |
|
67 |
df = get_user_stats_df()
|
|
|
68 |
desc = f"""
|
69 |
# 🤗 Hugging Face User Stats
|
70 |
-
|
71 |
-
Here are some stats on the top 1000 users/organizations on the Hugging Face Hub. **Updated {datetime.now().strftime("%d/%m/%y")}**
|
72 |
"""
|
|
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown(desc)
|
75 |
data = gr.components.Dataframe(
|
@@ -77,4 +73,5 @@ with gr.Blocks() as demo:
|
|
77 |
type="pandas",
|
78 |
datatype=["number", "markdown", "number", "number", "number", "number", "number", "number", "number", "number"],
|
79 |
)
|
|
|
80 |
demo.launch()
|
|
|
3 |
import pandas as pd
|
4 |
from datetime import datetime
|
5 |
|
|
|
6 |
def get_user_stats():
|
7 |
users = {}
|
8 |
for k, fn in zip(['model', 'dataset', 'space'], [list_models, list_datasets, list_spaces]):
|
9 |
for repo in fn(full=True):
|
10 |
if repo.author is None:
|
11 |
continue
|
|
|
12 |
if repo.author not in users:
|
13 |
users[repo.author] = {
|
14 |
x: 0 for x in [
|
|
|
28 |
for username, user_stats in users.items():
|
29 |
users[username]['total_likes'] += sum([v for k, v in user_stats.items() if "likes" in k])
|
30 |
users[username]['total_repos'] += sum([v for k, v in user_stats.items() if "num_" in k])
|
|
|
31 |
for k, v in users.items():
|
32 |
users[k] = dict(users[k])
|
|
|
33 |
return users
|
34 |
|
35 |
def make_clickable_user(user_id):
|
36 |
link = "https://huggingface.co/" + user_id
|
37 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
|
|
38 |
|
39 |
def get_user_stats_df(limit=1000):
|
40 |
users = get_user_stats()
|
41 |
df = pd.DataFrame([{'username': make_clickable_user(k), **v} for k, v in users.items()])
|
42 |
+
df.sort_values(by=["num_spaces"], ascending=False, inplace=True) # Sort by num_spaces in descending order
|
43 |
df.insert(0, "rank", list(range(1, len(df) + 1)))
|
44 |
df = df[
|
45 |
[
|
|
|
60 |
return df
|
61 |
|
62 |
df = get_user_stats_df()
|
63 |
+
|
64 |
desc = f"""
|
65 |
# 🤗 Hugging Face User Stats
|
66 |
+
Here are some stats on the top 1000 users/organizations on the Hugging Face Hub, sorted by the number of Spaces. **Updated {datetime.now().strftime("%d/%m/%y")}**
|
|
|
67 |
"""
|
68 |
+
|
69 |
with gr.Blocks() as demo:
|
70 |
gr.Markdown(desc)
|
71 |
data = gr.components.Dataframe(
|
|
|
73 |
type="pandas",
|
74 |
datatype=["number", "markdown", "number", "number", "number", "number", "number", "number", "number", "number"],
|
75 |
)
|
76 |
+
|
77 |
demo.launch()
|