File size: 962 Bytes
94fb3e3
87b7198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94fb3e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<html>
    <head>
        <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />
    </head>
    <body>
<gradio-lite>

<gradio-requirements>
transformers_js_py
</gradio-requirements>

<gradio-file name="app.py" entrypoint>
from transformers_js import import_transformers_js
import gradio as gr

speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/speaker_embeddings.bin';

transformers = await import_transformers_js()
pipeline = transformers.pipeline
synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { "quantized": False })

async def classify(text):
    return await synthesizer(text, { "speaker_embeddings": speaker_embeddings });

demo = gr.Interface(classify, "textbox", "audio")
demo.launch()
</gradio-file>

</gradio-lite>

    </body>
</html>