import streamlit as st from transformers import pipeline from PIL import Image from datasets import load_dataset, Image, list_datasets from PIL import Image MODELS = [ "google/vit-base-patch16-224", #Classifição geral "nateraw/vit-age-classifier" #Classifição de idade ] DATASETS = [ "Nunt/testedata", "Nunt/backup_leonardo_2024-02-01" ] MAX_N_LABELS = 5 #(image_object, classifier_pipeline) #def classify_one_image(classifier_model, dataset_to_classify): def classify_one_image(classifier_model, dataset_to_classify): for image in dataset: st("Image classification: ", image['file']) ''' image_path = image['file'] img = Image.open(image_path) st.image(img, caption="Original image", use_column_width=True) results = classifier(image_path, top_k=MAX_N_LABELS) st.write(results) st.write("----") ''' return "done" def classify_full_dataset(shosen_dataset_name, chosen_model_name): image_count = 0 #dataset dataset = load_dataset(shosen_dataset_name,"testedata_readme") #Image teste load image_object = dataset['pasta'][0]["image"] st.image(image_object, caption="Uploaded Image", height=300) st.write("### FLAG 3") #modle instance classifier_pipeline = pipeline('image-classification', model=chosen_model_name) st.write("### FLAG 4") #classification classification_result = classify_one_image(image_object, classifier_pipeline) st.write(classification_result) st.write("### FLAG 5") #classification_array.append(classification_result) #save classification image_count += 1 return image_count def main(): st.title("Bulk Image Classification") st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.") st.write("Soon we will have a dataset template") #Model chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0) if chosen_model_name is not None: st.write("You selected", chosen_model_name) #Dataset shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0) if shosen_dataset_name is not None: st.write("You selected", shosen_dataset_name) #click to classify #image_object = dataset['pasta'][0] if chosen_model_name is not None and shosen_dataset_name is not None: if st.button("Classify images"): #classification_array =[] classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name) st.write(f"Classification result: {classification_result}") #classification_array.append(classification_result) #st.write("# FLAG 6") #st.write(classification_array) if __name__ == "__main__": main()