Spaces:
Running
Running
test
Browse files
app.py
CHANGED
@@ -15,6 +15,9 @@ DATASETS = [
|
|
15 |
MAX_N_LABELS = 5
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
17 |
COL1, COL2 = st.columns([3, 1])
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
#(image_object, classifier_pipeline)
|
@@ -74,43 +77,47 @@ def classify_full_dataset(shosen_dataset_name, chosen_model_name):
|
|
74 |
return image_count
|
75 |
|
76 |
def main():
|
77 |
-
|
|
|
|
|
78 |
|
79 |
|
80 |
# Restart or reset your app
|
81 |
# if st.button("Restart"):
|
82 |
# # Code to restart or reset your app goes here
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
st.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
st.
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
main()
|
|
|
15 |
MAX_N_LABELS = 5
|
16 |
SPLIT_TO_CLASSIFY = 'pasta'
|
17 |
COL1, COL2 = st.columns([3, 1])
|
18 |
+
CONTAINER_TOP = st.container()
|
19 |
+
CONTAINER_BODY = st.container()
|
20 |
+
|
21 |
|
22 |
|
23 |
#(image_object, classifier_pipeline)
|
|
|
77 |
return image_count
|
78 |
|
79 |
def main():
|
80 |
+
|
81 |
+
with CONTAINER_TOP:
|
82 |
+
st.title("Bulk Image Classification DEMO")
|
83 |
|
84 |
|
85 |
# Restart or reset your app
|
86 |
# if st.button("Restart"):
|
87 |
# # Code to restart or reset your app goes here
|
88 |
+
# import subprocess
|
89 |
+
# subprocess.call(["shutdown", "-r", "-t", "0"])
|
90 |
+
CONTAINER_BODY = st.container():
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
with COL1:
|
95 |
+
st.markdown("This app uses several π€ models to classify images stored in π€ datasets.")
|
96 |
+
st.write("Soon we will have a dataset template")
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
#Model
|
101 |
+
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
|
102 |
+
if chosen_model_name is not None:
|
103 |
+
st.write("You selected", chosen_model_name)
|
104 |
+
|
105 |
+
#Dataset
|
106 |
+
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
|
107 |
+
if shosen_dataset_name is not None:
|
108 |
+
st.write("You selected", shosen_dataset_name)
|
109 |
+
|
110 |
+
#click to classify
|
111 |
+
#image_object = dataset['pasta'][0]
|
112 |
+
if chosen_model_name is not None and shosen_dataset_name is not None:
|
113 |
+
if st.button("Classify images"):
|
114 |
+
|
115 |
+
#classification_array =[]
|
116 |
+
classification_result = classify_full_dataset(shosen_dataset_name, chosen_model_name)
|
117 |
+
st.write(f"Classification result: {classification_result}")
|
118 |
+
#classification_array.append(classification_result)
|
119 |
+
#st.write("# FLAG 6")
|
120 |
+
#st.write(classification_array)
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
main()
|