Spaces:
Sleeping
Sleeping
File size: 2,731 Bytes
0f7e74b 047d5b0 cc65489 13e77a1 cc65489 047d5b0 0f7e74b cc65489 2a6d2ae cc65489 1917584 0f7e74b 047d5b0 5523bc2 cc65489 65a0251 cc65489 7c61955 e47de68 cc65489 396ae71 7c61955 e47de68 2a6d2ae e47de68 65a0251 cc65489 1917584 2a6d2ae 396ae71 2a6d2ae 1917584 0b2af02 abb9f88 2a6d2ae 1917584 65a0251 2a6d2ae cc65489 1917584 047d5b0 0f7e74b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import streamlit as st
from transformers import pipeline
from PIL import Image
from datasets import load_dataset, Image, list_datasets
from PIL import Image
MODELS = [
"google/vit-base-patch16-224", #Classifição geral
"nateraw/vit-age-classifier" #Classifição de idade
]
DATASETS = [
"Nunt/testedata",
"Nunt/backup_leonardo_2024-02-01"
]
MAX_N_LABELS = 5
def classify_images(classifier_model, dataset_to_classify):
for image in dataset:
st("Image classification: ", image['file'])
'''
image_path = image['file']
img = Image.open(image_path)
st.image(img, caption="Original image", use_column_width=True)
results = classifier(image_path, top_k=MAX_N_LABELS)
st.write(results)
st.write("----")
'''
return "done"
def classify(image, classifier_pipeline):
return "done"
def main():
st.title("Bulk Image Classification")
st.markdown("This app uses several 🤗 models to classify images stored in 🤗 datasets.")
st.write("Soon we will have a dataset template")
'''
Model
'''
chosen_model_name = st.selectbox("Select the model to use", MODELS, index=0)
if chosen_model_name is not None:
st.write("You selected", chosen_model_name)
'''
Dataset
'''
shosen_dataset_name = st.selectbox("Select the dataset to use", DATASETS, index=0)
if shosen_dataset_name is not None:
st.write("You selected", shosen_dataset_name)
'''
click to classify
image_object = dataset['pasta'][0]
'''
if chosen_model_name is not None and shosen_dataset_name is not None:
if st.button("Classify images"):
classification_obj1 =[]
st.write("# FLAG 1")
dataset = load_dataset(shosen_dataset_name,"testedata_readme")
st.write("# FLAG 2")
#Igame
image_object = dataset['pasta'][0]["image"]
st.image(image_object, caption="Uploaded Image", use_column_width=True)
st.write("# FLAG 3")
#modle instance
classifier_pipeline = pipeline('image-classification', model=chosen_model_name, device=0)
st.write("# FLAG 4")
#classification
classification_result = classify(image_object, classifier_pipeline)
st.write(classification_result)
st.write("# FLAG 5")
classification_obj1.append(classification_result)
st.write("# FLAG 6")
st.write(classification_obj1)
if __name__ == "__main__":
main() |