Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
@@ -7,56 +11,28 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
|
42 |
|
43 |
"""
|
44 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
],
|
60 |
)
|
61 |
|
62 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Sentiment pipeline
|
6 |
+
sentiment = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
7 |
|
8 |
"""
|
9 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
|
|
11 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
12 |
|
13 |
|
14 |
+
def get_sentiment(text):
|
15 |
+
output = sentiment(text)
|
16 |
+
return f'The sentence was classified as "{output[0]["label"]}" with {output[0]["score"]*100}% confidence'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
"""
|
21 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
22 |
"""
|
23 |
+
|
24 |
+
title = "Get a sentiment on you text"
|
25 |
+
description = """
|
26 |
+
The bot was takes your text and classify it as either 'Positive' or 'Negative'
|
27 |
+
"""
|
28 |
+
|
29 |
+
demo = gr.Interface(
|
30 |
+
fn=get_sentiment,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title=title,
|
34 |
+
description=description,
|
35 |
+
examples=[["I really enjoyed my stay !"], ["Worst rental I ever got"]],
|
|
|
36 |
)
|
37 |
|
38 |
|