NasserAlkuhili commited on
Commit
639d13b
·
verified ·
1 Parent(s): f2d9ad5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -44
app.py CHANGED
@@ -1,5 +1,9 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
@@ -7,56 +11,28 @@ For more information on `huggingface_hub` Inference API support, please check th
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
 
43
  """
44
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import pipeline
4
+
5
+ # Sentiment pipeline
6
+ sentiment = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
7
 
8
  """
9
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
11
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
12
 
13
 
14
+ def get_sentiment(text):
15
+ output = sentiment(text)
16
+ return f'The sentence was classified as "{output[0]["label"]}" with {output[0]["score"]*100}% confidence'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
 
20
  """
21
  For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
22
  """
23
+
24
+ title = "Get a sentiment on you text"
25
+ description = """
26
+ The bot was takes your text and classify it as either 'Positive' or 'Negative'
27
+ """
28
+
29
+ demo = gr.Interface(
30
+ fn=get_sentiment,
31
+ inputs="text",
32
+ outputs="text",
33
+ title=title,
34
+ description=description,
35
+ examples=[["I really enjoyed my stay !"], ["Worst rental I ever got"]],
 
36
  )
37
 
38