#app.py Modif04 | |
#https://www.freddyboulton.com/blog/llama-cpp-python | |
import gradio as gr | |
from llama_cpp import Llama | |
llm = Llama( | |
model_path="/home/user/app/h2o-danube3-500m-chat-Q4_K_M.gguf", | |
verbose=True | |
) | |
def predict(message, history): | |
# messages = [{"role": "system", "content": "You are a helpful assistant."}] | |
# messages = [{"role": "assistant", "content": "You are a helpful assistant."}] | |
# messages = [{"role": "assistant", "content": "Bonjour, comment puis-je vous aider?"}] | |
messages = [] | |
for user_message, bot_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if bot_message: | |
messages.append({"role": "assistant", "content": bot_message}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for chunk in llm.create_chat_completion( | |
stream=True, | |
messages=messages, | |
): | |
part = chunk["choices"][0]["delta"].get("content", None) | |
if part: | |
response += part | |
yield response | |
demo = gr.ChatInterface(predict) | |
demo.launch() | |
##app.py Modif03 | |
#import gradio as gr | |
#from huggingface_hub import create_inference_endpoint, InferenceClient | |
#from transformers import AutoModelForCausalLM, AutoTokenizer | |
# | |
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf" | |
##model = AutoModelForCausalLM.from_pretrained(model_name) | |
##tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# | |
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf") | |
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf") | |
# | |
## Créez une instance Inference locale | |
#endpoint = create_inference_endpoint( | |
# "Local-Endpoint-MisterAI-H2O", | |
# repository="MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf", | |
## model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf", | |
# framework="pytorch", | |
# task="text-generation", | |
# accelerator="cpu", | |
# vendor="local", | |
# region="local", | |
# type="unprotected", | |
# instance_size="small", | |
# instance_type="local", | |
# URL="http://0.0.0.0:6789" | |
#) | |
# | |
#print(f"Endpoint créé à l'URL : {endpoint.url}") | |
# | |
#client = endpoint.client | |
# | |
# | |
# | |
#def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
#): | |
# messages = [{"role": "system", "content": system_message}] | |
# | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# | |
# messages.append({"role": "user", "content": message}) | |
# | |
# response = "" | |
# | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# | |
# response += token | |
# yield response | |
# | |
#demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
#) | |
# | |
# | |
#if __name__ == "__main__": | |
# demo.launch() | |
# | |
# | |
# | |
# | |
##app.py Modif01 | |
#import gradio as gr | |
#from huggingface_hub import Inference, InferenceClient | |
#from transformers import AutoModelForCausalLM, AutoTokenizer | |
# | |
##model_name = "MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf" | |
##model = AutoModelForCausalLM.from_pretrained(model_name) | |
##tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# | |
##client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
##client = InferenceClient("MisterAI/H20GPT_h2o-danube3-500m-chat-Q4_K_M_gguf") | |
##client = InferenceClient("/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf") | |
# | |
## Créez une instance Inference locale | |
#inference = Inference( | |
# model_path="/home/user/app/H20GPT_h2o-danube3-500m-chat-Q4_K_M.gguf", | |
# device="cpu", # Utilisez le CPU pour l'inference | |
# token=None, # Pas de token nécessaire pour cette instance | |
#) | |
# | |
#client = inference | |
# | |
# | |
# | |
#def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
#): | |
# messages = [{"role": "system", "content": system_message}] | |
# | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# | |
# messages.append({"role": "user", "content": message}) | |
# | |
# response = "" | |
# | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# | |
# response += token | |
# yield response | |
# | |
#demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
#) | |
# | |
# | |
#if __name__ == "__main__": | |
# demo.launch() | |
# | |
# | |
# | |
# | |
# | |
##app.py ORIGINAL | |
#import gradio as gr | |
#from huggingface_hub import InferenceClient | |
# | |
#""" | |
#For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
#""" | |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# | |
# | |
#def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
#): | |
# messages = [{"role": "system", "content": system_message}] | |
# | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# | |
# messages.append({"role": "user", "content": message}) | |
# | |
# response = "" | |
# | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# | |
# response += token | |
# yield response | |
# | |
#""" | |
#For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
#""" | |
#demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
#) | |
# | |
# | |
#if __name__ == "__main__": | |
# demo.launch() | |