Spaces:
Running
Running
Start de quickstart
Browse files- translatube.py +5 -634
translatube.py
CHANGED
@@ -1,637 +1,8 @@
|
|
1 |
-
from __future__ import annotations
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torchaudio
|
7 |
-
from huggingface_hub import hf_hub_download
|
8 |
-
from seamless_communication.models.inference.translator import Translator
|
9 |
-
|
10 |
-
DESCRIPTION = """# TranslaTube"""
|
11 |
-
|
12 |
-
TASK_NAMES = [
|
13 |
-
"S2ST (Speech to Speech translation)",
|
14 |
-
"S2TT (Speech to Text translation)",
|
15 |
-
"T2ST (Text to Speech translation)",
|
16 |
-
"T2TT (Text to Text translation)",
|
17 |
-
"ASR (Automatic Speech Recognition)",
|
18 |
-
]
|
19 |
-
|
20 |
-
# Language dict
|
21 |
-
language_code_to_name = {
|
22 |
-
"afr": "Afrikaans",
|
23 |
-
"amh": "Amharic",
|
24 |
-
"arb": "Modern Standard Arabic",
|
25 |
-
"ary": "Moroccan Arabic",
|
26 |
-
"arz": "Egyptian Arabic",
|
27 |
-
"asm": "Assamese",
|
28 |
-
"ast": "Asturian",
|
29 |
-
"azj": "North Azerbaijani",
|
30 |
-
"bel": "Belarusian",
|
31 |
-
"ben": "Bengali",
|
32 |
-
"bos": "Bosnian",
|
33 |
-
"bul": "Bulgarian",
|
34 |
-
"cat": "Catalan",
|
35 |
-
"ceb": "Cebuano",
|
36 |
-
"ces": "Czech",
|
37 |
-
"ckb": "Central Kurdish",
|
38 |
-
"cmn": "Mandarin Chinese",
|
39 |
-
"cym": "Welsh",
|
40 |
-
"dan": "Danish",
|
41 |
-
"deu": "German",
|
42 |
-
"ell": "Greek",
|
43 |
-
"eng": "English",
|
44 |
-
"est": "Estonian",
|
45 |
-
"eus": "Basque",
|
46 |
-
"fin": "Finnish",
|
47 |
-
"fra": "French",
|
48 |
-
"gaz": "West Central Oromo",
|
49 |
-
"gle": "Irish",
|
50 |
-
"glg": "Galician",
|
51 |
-
"guj": "Gujarati",
|
52 |
-
"heb": "Hebrew",
|
53 |
-
"hin": "Hindi",
|
54 |
-
"hrv": "Croatian",
|
55 |
-
"hun": "Hungarian",
|
56 |
-
"hye": "Armenian",
|
57 |
-
"ibo": "Igbo",
|
58 |
-
"ind": "Indonesian",
|
59 |
-
"isl": "Icelandic",
|
60 |
-
"ita": "Italian",
|
61 |
-
"jav": "Javanese",
|
62 |
-
"jpn": "Japanese",
|
63 |
-
"kam": "Kamba",
|
64 |
-
"kan": "Kannada",
|
65 |
-
"kat": "Georgian",
|
66 |
-
"kaz": "Kazakh",
|
67 |
-
"kea": "Kabuverdianu",
|
68 |
-
"khk": "Halh Mongolian",
|
69 |
-
"khm": "Khmer",
|
70 |
-
"kir": "Kyrgyz",
|
71 |
-
"kor": "Korean",
|
72 |
-
"lao": "Lao",
|
73 |
-
"lit": "Lithuanian",
|
74 |
-
"ltz": "Luxembourgish",
|
75 |
-
"lug": "Ganda",
|
76 |
-
"luo": "Luo",
|
77 |
-
"lvs": "Standard Latvian",
|
78 |
-
"mai": "Maithili",
|
79 |
-
"mal": "Malayalam",
|
80 |
-
"mar": "Marathi",
|
81 |
-
"mkd": "Macedonian",
|
82 |
-
"mlt": "Maltese",
|
83 |
-
"mni": "Meitei",
|
84 |
-
"mya": "Burmese",
|
85 |
-
"nld": "Dutch",
|
86 |
-
"nno": "Norwegian Nynorsk",
|
87 |
-
"nob": "Norwegian Bokm\u00e5l",
|
88 |
-
"npi": "Nepali",
|
89 |
-
"nya": "Nyanja",
|
90 |
-
"oci": "Occitan",
|
91 |
-
"ory": "Odia",
|
92 |
-
"pan": "Punjabi",
|
93 |
-
"pbt": "Southern Pashto",
|
94 |
-
"pes": "Western Persian",
|
95 |
-
"pol": "Polish",
|
96 |
-
"por": "Portuguese",
|
97 |
-
"ron": "Romanian",
|
98 |
-
"rus": "Russian",
|
99 |
-
"slk": "Slovak",
|
100 |
-
"slv": "Slovenian",
|
101 |
-
"sna": "Shona",
|
102 |
-
"snd": "Sindhi",
|
103 |
-
"som": "Somali",
|
104 |
-
"spa": "Spanish",
|
105 |
-
"srp": "Serbian",
|
106 |
-
"swe": "Swedish",
|
107 |
-
"swh": "Swahili",
|
108 |
-
"tam": "Tamil",
|
109 |
-
"tel": "Telugu",
|
110 |
-
"tgk": "Tajik",
|
111 |
-
"tgl": "Tagalog",
|
112 |
-
"tha": "Thai",
|
113 |
-
"tur": "Turkish",
|
114 |
-
"ukr": "Ukrainian",
|
115 |
-
"urd": "Urdu",
|
116 |
-
"uzn": "Northern Uzbek",
|
117 |
-
"vie": "Vietnamese",
|
118 |
-
"xho": "Xhosa",
|
119 |
-
"yor": "Yoruba",
|
120 |
-
"yue": "Cantonese",
|
121 |
-
"zlm": "Colloquial Malay",
|
122 |
-
"zsm": "Standard Malay",
|
123 |
-
"zul": "Zulu",
|
124 |
-
}
|
125 |
-
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
126 |
-
|
127 |
-
# Source langs: S2ST / S2TT / ASR don't need source lang
|
128 |
-
# T2TT / T2ST use this
|
129 |
-
text_source_language_codes = [
|
130 |
-
"afr",
|
131 |
-
"amh",
|
132 |
-
"arb",
|
133 |
-
"ary",
|
134 |
-
"arz",
|
135 |
-
"asm",
|
136 |
-
"azj",
|
137 |
-
"bel",
|
138 |
-
"ben",
|
139 |
-
"bos",
|
140 |
-
"bul",
|
141 |
-
"cat",
|
142 |
-
"ceb",
|
143 |
-
"ces",
|
144 |
-
"ckb",
|
145 |
-
"cmn",
|
146 |
-
"cym",
|
147 |
-
"dan",
|
148 |
-
"deu",
|
149 |
-
"ell",
|
150 |
-
"eng",
|
151 |
-
"est",
|
152 |
-
"eus",
|
153 |
-
"fin",
|
154 |
-
"fra",
|
155 |
-
"gaz",
|
156 |
-
"gle",
|
157 |
-
"glg",
|
158 |
-
"guj",
|
159 |
-
"heb",
|
160 |
-
"hin",
|
161 |
-
"hrv",
|
162 |
-
"hun",
|
163 |
-
"hye",
|
164 |
-
"ibo",
|
165 |
-
"ind",
|
166 |
-
"isl",
|
167 |
-
"ita",
|
168 |
-
"jav",
|
169 |
-
"jpn",
|
170 |
-
"kan",
|
171 |
-
"kat",
|
172 |
-
"kaz",
|
173 |
-
"khk",
|
174 |
-
"khm",
|
175 |
-
"kir",
|
176 |
-
"kor",
|
177 |
-
"lao",
|
178 |
-
"lit",
|
179 |
-
"lug",
|
180 |
-
"luo",
|
181 |
-
"lvs",
|
182 |
-
"mai",
|
183 |
-
"mal",
|
184 |
-
"mar",
|
185 |
-
"mkd",
|
186 |
-
"mlt",
|
187 |
-
"mni",
|
188 |
-
"mya",
|
189 |
-
"nld",
|
190 |
-
"nno",
|
191 |
-
"nob",
|
192 |
-
"npi",
|
193 |
-
"nya",
|
194 |
-
"ory",
|
195 |
-
"pan",
|
196 |
-
"pbt",
|
197 |
-
"pes",
|
198 |
-
"pol",
|
199 |
-
"por",
|
200 |
-
"ron",
|
201 |
-
"rus",
|
202 |
-
"slk",
|
203 |
-
"slv",
|
204 |
-
"sna",
|
205 |
-
"snd",
|
206 |
-
"som",
|
207 |
-
"spa",
|
208 |
-
"srp",
|
209 |
-
"swe",
|
210 |
-
"swh",
|
211 |
-
"tam",
|
212 |
-
"tel",
|
213 |
-
"tgk",
|
214 |
-
"tgl",
|
215 |
-
"tha",
|
216 |
-
"tur",
|
217 |
-
"ukr",
|
218 |
-
"urd",
|
219 |
-
"uzn",
|
220 |
-
"vie",
|
221 |
-
"yor",
|
222 |
-
"yue",
|
223 |
-
"zsm",
|
224 |
-
"zul",
|
225 |
-
]
|
226 |
-
TEXT_SOURCE_LANGUAGE_NAMES = sorted(
|
227 |
-
[language_code_to_name[code] for code in text_source_language_codes]
|
228 |
-
)
|
229 |
-
|
230 |
-
# Target langs:
|
231 |
-
# S2ST / T2ST
|
232 |
-
s2st_target_language_codes = [
|
233 |
-
"eng",
|
234 |
-
"arb",
|
235 |
-
"ben",
|
236 |
-
"cat",
|
237 |
-
"ces",
|
238 |
-
"cmn",
|
239 |
-
"cym",
|
240 |
-
"dan",
|
241 |
-
"deu",
|
242 |
-
"est",
|
243 |
-
"fin",
|
244 |
-
"fra",
|
245 |
-
"hin",
|
246 |
-
"ind",
|
247 |
-
"ita",
|
248 |
-
"jpn",
|
249 |
-
"kor",
|
250 |
-
"mlt",
|
251 |
-
"nld",
|
252 |
-
"pes",
|
253 |
-
"pol",
|
254 |
-
"por",
|
255 |
-
"ron",
|
256 |
-
"rus",
|
257 |
-
"slk",
|
258 |
-
"spa",
|
259 |
-
"swe",
|
260 |
-
"swh",
|
261 |
-
"tel",
|
262 |
-
"tgl",
|
263 |
-
"tha",
|
264 |
-
"tur",
|
265 |
-
"ukr",
|
266 |
-
"urd",
|
267 |
-
"uzn",
|
268 |
-
"vie",
|
269 |
-
]
|
270 |
-
S2ST_TARGET_LANGUAGE_NAMES = sorted(
|
271 |
-
[language_code_to_name[code] for code in s2st_target_language_codes]
|
272 |
-
)
|
273 |
-
# S2TT / ASR
|
274 |
-
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
275 |
-
# T2TT
|
276 |
-
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
277 |
-
|
278 |
-
# Download sample input audio files
|
279 |
-
filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"]
|
280 |
-
for filename in filenames:
|
281 |
-
hf_hub_download(
|
282 |
-
repo_id="facebook/seamless_m4t",
|
283 |
-
repo_type="space",
|
284 |
-
filename=filename,
|
285 |
-
local_dir=".",
|
286 |
-
)
|
287 |
-
|
288 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
289 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
290 |
-
DEFAULT_TARGET_LANGUAGE = "French"
|
291 |
-
|
292 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
293 |
-
translator = Translator(
|
294 |
-
model_name_or_card="seamlessM4T_large",
|
295 |
-
vocoder_name_or_card="vocoder_36langs",
|
296 |
-
device=device,
|
297 |
-
dtype=torch.float16 if "cuda" in device.type else torch.float32,
|
298 |
-
)
|
299 |
-
|
300 |
-
|
301 |
-
def predict(
|
302 |
-
task_name: str,
|
303 |
-
audio_source: str,
|
304 |
-
input_audio_mic: str | None,
|
305 |
-
input_audio_file: str | None,
|
306 |
-
input_text: str | None,
|
307 |
-
source_language: str | None,
|
308 |
-
target_language: str,
|
309 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
310 |
-
task_name = task_name.split()[0]
|
311 |
-
source_language_code = (
|
312 |
-
LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
313 |
-
)
|
314 |
-
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
315 |
-
|
316 |
-
if task_name in ["S2ST", "S2TT", "ASR"]:
|
317 |
-
if audio_source == "microphone":
|
318 |
-
input_data = input_audio_mic
|
319 |
-
else:
|
320 |
-
input_data = input_audio_file
|
321 |
-
|
322 |
-
arr, org_sr = torchaudio.load(input_data)
|
323 |
-
new_arr = torchaudio.functional.resample(
|
324 |
-
arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE
|
325 |
-
)
|
326 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
327 |
-
if new_arr.shape[1] > max_length:
|
328 |
-
new_arr = new_arr[:, :max_length]
|
329 |
-
gr.Warning(
|
330 |
-
f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used."
|
331 |
-
)
|
332 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
333 |
-
else:
|
334 |
-
input_data = input_text
|
335 |
-
text_out, wav, sr = translator.predict(
|
336 |
-
input=input_data,
|
337 |
-
task_str=task_name,
|
338 |
-
tgt_lang=target_language_code,
|
339 |
-
src_lang=source_language_code,
|
340 |
-
ngram_filtering=True,
|
341 |
-
)
|
342 |
-
if task_name in ["S2ST", "T2ST"]:
|
343 |
-
return (sr, wav.cpu().detach().numpy()), text_out
|
344 |
-
else:
|
345 |
-
return None, text_out
|
346 |
-
|
347 |
-
|
348 |
-
def process_s2st_example(
|
349 |
-
input_audio_file: str, target_language: str
|
350 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
351 |
-
return predict(
|
352 |
-
task_name="S2ST",
|
353 |
-
audio_source="file",
|
354 |
-
input_audio_mic=None,
|
355 |
-
input_audio_file=input_audio_file,
|
356 |
-
input_text=None,
|
357 |
-
source_language=None,
|
358 |
-
target_language=target_language,
|
359 |
-
)
|
360 |
-
|
361 |
-
|
362 |
-
def process_s2tt_example(
|
363 |
-
input_audio_file: str, target_language: str
|
364 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
365 |
-
return predict(
|
366 |
-
task_name="S2TT",
|
367 |
-
audio_source="file",
|
368 |
-
input_audio_mic=None,
|
369 |
-
input_audio_file=input_audio_file,
|
370 |
-
input_text=None,
|
371 |
-
source_language=None,
|
372 |
-
target_language=target_language,
|
373 |
-
)
|
374 |
-
|
375 |
-
|
376 |
-
def process_t2st_example(
|
377 |
-
input_text: str, source_language: str, target_language: str
|
378 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
379 |
-
return predict(
|
380 |
-
task_name="T2ST",
|
381 |
-
audio_source="",
|
382 |
-
input_audio_mic=None,
|
383 |
-
input_audio_file=None,
|
384 |
-
input_text=input_text,
|
385 |
-
source_language=source_language,
|
386 |
-
target_language=target_language,
|
387 |
-
)
|
388 |
-
|
389 |
-
|
390 |
-
def process_t2tt_example(
|
391 |
-
input_text: str, source_language: str, target_language: str
|
392 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
393 |
-
return predict(
|
394 |
-
task_name="T2TT",
|
395 |
-
audio_source="",
|
396 |
-
input_audio_mic=None,
|
397 |
-
input_audio_file=None,
|
398 |
-
input_text=input_text,
|
399 |
-
source_language=source_language,
|
400 |
-
target_language=target_language,
|
401 |
-
)
|
402 |
-
|
403 |
-
|
404 |
-
def process_asr_example(
|
405 |
-
input_audio_file: str, target_language: str
|
406 |
-
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
407 |
-
return predict(
|
408 |
-
task_name="ASR",
|
409 |
-
audio_source="file",
|
410 |
-
input_audio_mic=None,
|
411 |
-
input_audio_file=input_audio_file,
|
412 |
-
input_text=None,
|
413 |
-
source_language=None,
|
414 |
-
target_language=target_language,
|
415 |
-
)
|
416 |
-
|
417 |
-
|
418 |
-
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
419 |
-
mic = audio_source == "microphone"
|
420 |
-
return (
|
421 |
-
gr.update(visible=mic, value=None), # input_audio_mic
|
422 |
-
gr.update(visible=not mic, value=None), # input_audio_file
|
423 |
-
)
|
424 |
-
|
425 |
-
|
426 |
-
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
427 |
-
task_name = task_name.split()[0]
|
428 |
-
if task_name == "S2ST":
|
429 |
-
return (
|
430 |
-
gr.update(visible=True), # audio_box
|
431 |
-
gr.update(visible=False), # input_text
|
432 |
-
gr.update(visible=False), # source_language
|
433 |
-
gr.update(
|
434 |
-
visible=True,
|
435 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
436 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
437 |
-
), # target_language
|
438 |
-
)
|
439 |
-
elif task_name == "S2TT":
|
440 |
-
return (
|
441 |
-
gr.update(visible=True), # audio_box
|
442 |
-
gr.update(visible=False), # input_text
|
443 |
-
gr.update(visible=False), # source_language
|
444 |
-
gr.update(
|
445 |
-
visible=True,
|
446 |
-
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
447 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
448 |
-
), # target_language
|
449 |
-
)
|
450 |
-
elif task_name == "T2ST":
|
451 |
-
return (
|
452 |
-
gr.update(visible=False), # audio_box
|
453 |
-
gr.update(visible=True), # input_text
|
454 |
-
gr.update(visible=True), # source_language
|
455 |
-
gr.update(
|
456 |
-
visible=True,
|
457 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
458 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
459 |
-
), # target_language
|
460 |
-
)
|
461 |
-
elif task_name == "T2TT":
|
462 |
-
return (
|
463 |
-
gr.update(visible=False), # audio_box
|
464 |
-
gr.update(visible=True), # input_text
|
465 |
-
gr.update(visible=True), # source_language
|
466 |
-
gr.update(
|
467 |
-
visible=True,
|
468 |
-
choices=T2TT_TARGET_LANGUAGE_NAMES,
|
469 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
470 |
-
), # target_language
|
471 |
-
)
|
472 |
-
elif task_name == "ASR":
|
473 |
-
return (
|
474 |
-
gr.update(visible=True), # audio_box
|
475 |
-
gr.update(visible=False), # input_text
|
476 |
-
gr.update(visible=False), # source_language
|
477 |
-
gr.update(
|
478 |
-
visible=True,
|
479 |
-
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
480 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
481 |
-
), # target_language
|
482 |
-
)
|
483 |
-
else:
|
484 |
-
raise ValueError(f"Unknown task: {task_name}")
|
485 |
-
|
486 |
-
|
487 |
-
def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
488 |
-
task_name = task_name.split()[0]
|
489 |
-
if task_name in ["S2ST", "T2ST"]:
|
490 |
-
return (
|
491 |
-
gr.update(visible=True, value=None), # output_audio
|
492 |
-
gr.update(value=None), # output_text
|
493 |
-
)
|
494 |
-
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
495 |
-
return (
|
496 |
-
gr.update(visible=False, value=None), # output_audio
|
497 |
-
gr.update(value=None), # output_text
|
498 |
-
)
|
499 |
-
else:
|
500 |
-
raise ValueError(f"Unknown task: {task_name}")
|
501 |
-
|
502 |
-
|
503 |
-
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
504 |
-
task_name = task_name.split()[0]
|
505 |
-
return (
|
506 |
-
gr.update(visible=task_name == "S2ST"), # s2st_example_row
|
507 |
-
gr.update(visible=task_name == "S2TT"), # s2tt_example_row
|
508 |
-
gr.update(visible=task_name == "T2ST"), # t2st_example_row
|
509 |
-
gr.update(visible=task_name == "T2TT"), # t2tt_example_row
|
510 |
-
gr.update(visible=task_name == "ASR"), # asr_example_row
|
511 |
-
)
|
512 |
-
|
513 |
-
def check_url(url: str) -> bool:
|
514 |
-
if url.startswith("https://www.youtube.com/watch?v="):
|
515 |
-
print("URL is valid")
|
516 |
-
|
517 |
-
|
518 |
-
css = """
|
519 |
-
h1 {
|
520 |
-
text-align: center;
|
521 |
-
}
|
522 |
-
|
523 |
-
.contain {
|
524 |
-
max-width: 730px;
|
525 |
-
margin: auto;
|
526 |
-
padding-top: 1.5rem;
|
527 |
-
}
|
528 |
-
"""
|
529 |
-
|
530 |
-
with gr.Blocks(css=css) as translatube:
|
531 |
-
# Title
|
532 |
-
gr.Markdown(DESCRIPTION)
|
533 |
-
|
534 |
-
# URL video
|
535 |
-
with gr.Group():
|
536 |
-
url_text = gr.Textbox(label="URL video", placeholder="Paste URL video here")
|
537 |
-
|
538 |
-
with gr.Group() as tasks:
|
539 |
-
task_name = gr.Dropdown(
|
540 |
-
label="Task",
|
541 |
-
choices=TASK_NAMES,
|
542 |
-
value=TASK_NAMES[0],
|
543 |
-
)
|
544 |
-
with gr.Row():
|
545 |
-
source_language = gr.Dropdown(
|
546 |
-
label="Source language",
|
547 |
-
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
548 |
-
value="English",
|
549 |
-
# visible=False,
|
550 |
-
)
|
551 |
-
target_language = gr.Dropdown(
|
552 |
-
label="Target language",
|
553 |
-
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
554 |
-
value=DEFAULT_TARGET_LANGUAGE,
|
555 |
-
)
|
556 |
-
# with gr.Row() as audio_box:
|
557 |
-
# audio_source = gr.Radio(
|
558 |
-
# label="Audio source",
|
559 |
-
# choices=["file", "microphone"],
|
560 |
-
# value="file",
|
561 |
-
# )
|
562 |
-
# input_audio_mic = gr.Audio(
|
563 |
-
# label="Input speech",
|
564 |
-
# type="filepath",
|
565 |
-
# source="microphone",
|
566 |
-
# visible=False,
|
567 |
-
# )
|
568 |
-
# input_audio_file = gr.Audio(
|
569 |
-
# label="Input speech",
|
570 |
-
# type="filepath",
|
571 |
-
# source="upload",
|
572 |
-
# visible=True,
|
573 |
-
# )
|
574 |
-
# input_text = gr.Textbox(label="Input text", visible=False)
|
575 |
-
btn = gr.Button("Translate")
|
576 |
-
with gr.Column():
|
577 |
-
output_audio = gr.Audio(
|
578 |
-
label="Translated speech",
|
579 |
-
autoplay=False,
|
580 |
-
streaming=False,
|
581 |
-
type="numpy",
|
582 |
-
)
|
583 |
-
output_text = gr.Textbox(label="Translated text")
|
584 |
-
|
585 |
-
url_text.change(
|
586 |
-
fn=check_url,
|
587 |
-
inputs=url_text,
|
588 |
-
outputs=[],
|
589 |
-
queue=False,
|
590 |
-
api_name=False,
|
591 |
-
)
|
592 |
-
# audio_source.change(
|
593 |
-
# fn=update_audio_ui,
|
594 |
-
# inputs=audio_source,
|
595 |
-
# outputs=[
|
596 |
-
# input_audio_mic,
|
597 |
-
# input_audio_file,
|
598 |
-
# ],
|
599 |
-
# queue=False,
|
600 |
-
# api_name=False,
|
601 |
-
# )
|
602 |
-
task_name.change(
|
603 |
-
fn=update_input_ui,
|
604 |
-
inputs=task_name,
|
605 |
-
outputs=[
|
606 |
-
# audio_box,
|
607 |
-
# input_text,
|
608 |
-
source_language,
|
609 |
-
target_language,
|
610 |
-
],
|
611 |
-
queue=False,
|
612 |
-
api_name=False,
|
613 |
-
).then(
|
614 |
-
fn=update_output_ui,
|
615 |
-
inputs=task_name,
|
616 |
-
outputs=[output_audio, output_text],
|
617 |
-
queue=False,
|
618 |
-
api_name=False,
|
619 |
-
)
|
620 |
|
621 |
-
|
622 |
-
|
623 |
-
inputs=[
|
624 |
-
task_name,
|
625 |
-
# audio_source,
|
626 |
-
# input_audio_mic,
|
627 |
-
# input_audio_file,
|
628 |
-
# input_text,
|
629 |
-
source_language,
|
630 |
-
target_language,
|
631 |
-
],
|
632 |
-
outputs=[output_audio, output_text],
|
633 |
-
api_name="run",
|
634 |
-
)
|
635 |
|
636 |
-
|
637 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
def greet(name):
|
4 |
+
return "Hello " + name + "!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
|
8 |
+
demo.launch()
|