|
|
|
#if defined(__GNUC__) |
|
#pragma GCC diagnostic ignored "-Wpedantic" |
|
#pragma GCC diagnostic ignored "-Wunused-local-typedefs" |
|
#endif |
|
|
|
#include "amx.h" |
|
#include "mmq.h" |
|
#include "ggml-impl.h" |
|
#include "ggml-cpu-impl.h" |
|
#include "ggml-cpu-quants.h" |
|
#include "ggml-quants.h" |
|
#include <algorithm> |
|
#include <type_traits> |
|
|
|
#if defined(__gnu_linux__) |
|
#include <sys/syscall.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#if defined(_OPENMP) |
|
#include <omp.h> |
|
#endif |
|
|
|
#if (defined(_WIN32) || defined(_WIN64)) |
|
#define RESTRICT __restrict |
|
#else |
|
#define RESTRICT __restrict__ |
|
#endif |
|
|
|
#if (defined(_WIN32) || defined(_WIN64)) |
|
#define ALWAYS_INLINE __forceinline |
|
#elif __has_attribute(always_inline) || defined(__GNUC__) |
|
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline |
|
#else |
|
#define ALWAYS_INLINE inline |
|
#endif |
|
|
|
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__) |
|
|
|
namespace { |
|
|
|
|
|
template <int n> |
|
struct Unroll { |
|
template <typename Func, typename... Args> |
|
ALWAYS_INLINE void operator()(const Func& f, Args... args) const { |
|
Unroll<n - 1>{}(f, args...); |
|
f(std::integral_constant<int, n - 1>{}, args...); |
|
} |
|
}; |
|
|
|
template <> |
|
struct Unroll<1> { |
|
template <typename Func, typename... Args> |
|
ALWAYS_INLINE void operator()(const Func& f, Args... args) const { |
|
f(std::integral_constant<int, 0>{}, args...); |
|
} |
|
}; |
|
|
|
|
|
template <typename T> struct PackedTypes {}; |
|
template <> struct PackedTypes<block_q4_0> { using type = int8_t; }; |
|
template <> struct PackedTypes<block_q4_1> { using type = uint8_t; }; |
|
template <> struct PackedTypes<block_q8_0> { using type = int8_t; }; |
|
template <typename T> using packed_B_type = typename PackedTypes<T>::type; |
|
|
|
template <typename T> |
|
struct do_compensate : std::integral_constant<bool, |
|
std::is_same<T, block_q8_0>::value> {}; |
|
|
|
template <typename T> |
|
struct do_unpack : std::integral_constant<bool, |
|
std::is_same<T, block_q4_0>::value || |
|
std::is_same<T, block_q4_1>::value> {}; |
|
|
|
template <typename T> |
|
struct is_type_qkk : std::integral_constant<bool, |
|
std::is_same<T, block_q4_K>::value || |
|
std::is_same<T, block_q5_K>::value || |
|
std::is_same<T, block_q6_K>::value || |
|
std::is_same<T, block_iq4_xs>::value> {}; |
|
|
|
#define GGML_DISPATCH_FLOATING_TYPES(TYPE, ...) \ |
|
[&] { \ |
|
switch (TYPE) { \ |
|
case GGML_TYPE_F16: { \ |
|
using type = ggml_fp16_t; \ |
|
constexpr int blck_size = 16; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_BF16: { \ |
|
using type = ggml_bf16_t; \ |
|
constexpr int blck_size = 32; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
default: \ |
|
fprintf(stderr, "Unsupported floating data type\n"); \ |
|
} \ |
|
}() |
|
|
|
#define GGML_DISPATCH_QTYPES(QT, ...) \ |
|
[&] { \ |
|
switch (QT) { \ |
|
case GGML_TYPE_Q4_0: { \ |
|
using type = block_q4_0; \ |
|
using vec_dot_type = block_q8_0; \ |
|
constexpr int blck_size = QK4_0; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_Q4_1: { \ |
|
using type = block_q4_1; \ |
|
using vec_dot_type = block_q8_1; \ |
|
constexpr int blck_size = QK4_1; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_Q8_0: { \ |
|
using type = block_q8_0; \ |
|
using vec_dot_type = block_q8_0; \ |
|
constexpr int blck_size = QK8_0; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_Q4_K: { \ |
|
using type = block_q4_K; \ |
|
using vec_dot_type = block_q8_K; \ |
|
constexpr int blck_size = QK_K; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_Q5_K: { \ |
|
using type = block_q5_K; \ |
|
using vec_dot_type = block_q8_K; \ |
|
constexpr int blck_size = QK_K; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_Q6_K: { \ |
|
using type = block_q6_K; \ |
|
using vec_dot_type = block_q8_K; \ |
|
constexpr int blck_size = QK_K; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
case GGML_TYPE_IQ4_XS: { \ |
|
using type = block_iq4_xs; \ |
|
using vec_dot_type = block_q8_K; \ |
|
constexpr int blck_size = QK_K; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
default: \ |
|
fprintf(stderr, "Unsupported quantized data type: %d\n", int(TYPE)); \ |
|
} \ |
|
}() |
|
|
|
#define GGML_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \ |
|
[&] { \ |
|
if (BOOL_V) { \ |
|
constexpr bool BOOL_NAME = true; \ |
|
return __VA_ARGS__(); \ |
|
} else { \ |
|
constexpr bool BOOL_NAME = false; \ |
|
return __VA_ARGS__(); \ |
|
} \ |
|
}() |
|
|
|
|
|
struct tile_config_t{ |
|
uint8_t palette_id = 0; |
|
uint8_t start_row = 0; |
|
uint8_t reserved_0[14] = {0}; |
|
uint16_t colsb[16] = {0}; |
|
uint8_t rows[16] = {0}; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define TC_CONFIG_TILE(i, r, cb) tc.rows[i] = r; tc.colsb[i] = cb |
|
void ggml_tile_config_init(void) { |
|
static thread_local bool is_first_time = true; |
|
|
|
if (!is_first_time) { |
|
return; |
|
} |
|
|
|
static thread_local tile_config_t tc; |
|
tile_config_t current_tc; |
|
_tile_storeconfig(¤t_tc); |
|
|
|
|
|
if (tc.palette_id == 0 || (memcmp(¤t_tc.colsb, &tc.colsb, sizeof(uint16_t) * 8) != 0 && |
|
memcmp(¤t_tc.rows, &tc.rows, sizeof(uint8_t) * 8) != 0)) { |
|
tc.palette_id = 1; |
|
tc.start_row = 0; |
|
TC_CONFIG_TILE(TMM0, 8, 64); |
|
TC_CONFIG_TILE(TMM1, 8, 64); |
|
TC_CONFIG_TILE(TMM2, 16, 32); |
|
TC_CONFIG_TILE(TMM3, 16, 32); |
|
TC_CONFIG_TILE(TMM4, 16, 64); |
|
TC_CONFIG_TILE(TMM5, 16, 64); |
|
TC_CONFIG_TILE(TMM6, 16, 64); |
|
TC_CONFIG_TILE(TMM7, 16, 64); |
|
_tile_loadconfig(&tc); |
|
} |
|
|
|
is_first_time = false; |
|
} |
|
|
|
|
|
|
|
template <typename TB> |
|
int get_tile_size() { |
|
int tile_size = TILE_N * sizeof(TB); |
|
if (do_compensate<TB>::value) { |
|
tile_size += TILE_N * sizeof(int32_t); |
|
} |
|
if (std::is_same<TB, block_q4_K>::value || |
|
std::is_same<TB, block_q5_K>::value) { |
|
tile_size += TILE_N * 4; |
|
} |
|
if (std::is_same<TB, block_iq4_xs>::value) { |
|
tile_size += TILE_N * 2; |
|
} |
|
return tile_size; |
|
} |
|
|
|
template <typename TB, int BLOCK_K> |
|
int get_row_size(int K) { |
|
int KB = K / BLOCK_K; |
|
int row_size = KB * sizeof(TB); |
|
if (do_compensate<TB>::value) { |
|
row_size += KB * sizeof(int32_t); |
|
} |
|
if (std::is_same<TB, block_q4_K>::value || |
|
std::is_same<TB, block_q5_K>::value) { |
|
row_size += KB * 4; |
|
} |
|
if (std::is_same<TB, block_iq4_xs>::value) { |
|
row_size += KB * 2; |
|
} |
|
return row_size; |
|
} |
|
|
|
|
|
inline float FP16_TO_FP32(ggml_half val) { |
|
__m256i v = _mm256_setr_epi16( |
|
val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); |
|
__m512 o = _mm512_cvtph_ps(v); |
|
return _mm512_cvtss_f32(o); |
|
} |
|
|
|
inline __m512 FP16_TO_FP32_VEC(ggml_half val) { |
|
__m256i v = _mm256_set1_epi16(val); |
|
return _mm512_cvtph_ps(v); |
|
} |
|
|
|
|
|
inline float _mm512_reduce_max_ps(const __m512 x) { |
|
__m512 v = x; |
|
__m512 v1 = _mm512_shuffle_f32x4(v, v, 0x4E); |
|
v = _mm512_max_ps(v, v1); |
|
v1 = _mm512_shuffle_f32x4(v, v, 0xB1); |
|
v = _mm512_max_ps(v, v1); |
|
v1 = _mm512_shuffle_ps(v, v, 0x4E); |
|
v = _mm512_max_ps(v, v1); |
|
v1 = _mm512_shuffle_ps(v, v, 0xB1); |
|
v = _mm512_max_ps(v, v1); |
|
return _mm512_cvtss_f32(v); |
|
} |
|
|
|
|
|
#define SHUFFLE_EPI32(a, b, mask) \ |
|
_mm256_castps_si256(_mm256_shuffle_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b), mask)) |
|
inline void transpose_8x8_32bit(__m256i * v, __m256i * v1) { |
|
|
|
v1[0] = _mm256_unpacklo_epi32(v[0], v[1]); |
|
v1[1] = _mm256_unpackhi_epi32(v[0], v[1]); |
|
v1[2] = _mm256_unpacklo_epi32(v[2], v[3]); |
|
v1[3] = _mm256_unpackhi_epi32(v[2], v[3]); |
|
v1[4] = _mm256_unpacklo_epi32(v[4], v[5]); |
|
v1[5] = _mm256_unpackhi_epi32(v[4], v[5]); |
|
v1[6] = _mm256_unpacklo_epi32(v[6], v[7]); |
|
v1[7] = _mm256_unpackhi_epi32(v[6], v[7]); |
|
|
|
|
|
v[0] = SHUFFLE_EPI32(v1[0], v1[2], 0x44); |
|
v[1] = SHUFFLE_EPI32(v1[0], v1[2], 0xee); |
|
v[2] = SHUFFLE_EPI32(v1[4], v1[6], 0x44); |
|
v[3] = SHUFFLE_EPI32(v1[4], v1[6], 0xee); |
|
v[4] = SHUFFLE_EPI32(v1[1], v1[3], 0x44); |
|
v[5] = SHUFFLE_EPI32(v1[1], v1[3], 0xee); |
|
v[6] = SHUFFLE_EPI32(v1[5], v1[7], 0x44); |
|
v[7] = SHUFFLE_EPI32(v1[5], v1[7], 0xee); |
|
|
|
|
|
v1[0] = _mm256_permute2f128_si256(v[2], v[0], 0x02); |
|
v1[1] = _mm256_permute2f128_si256(v[3], v[1], 0x02); |
|
v1[2] = _mm256_permute2f128_si256(v[6], v[4], 0x02); |
|
v1[3] = _mm256_permute2f128_si256(v[7], v[5], 0x02); |
|
v1[4] = _mm256_permute2f128_si256(v[2], v[0], 0x13); |
|
v1[5] = _mm256_permute2f128_si256(v[3], v[1], 0x13); |
|
v1[6] = _mm256_permute2f128_si256(v[6], v[4], 0x13); |
|
v1[7] = _mm256_permute2f128_si256(v[7], v[5], 0x13); |
|
} |
|
|
|
inline void transpose_16x4_32bit(__m512i * r, __m512i * d) { |
|
|
|
static const __m512i index1 = _mm512_set_epi32( |
|
0x0f, 0x0b, 0x07, 0x03, |
|
0x0e, 0x0a, 0x06, 0x02, |
|
0x0d, 0x09, 0x05, 0x01, |
|
0x0c, 0x08, 0x04, 0x00); |
|
|
|
d[0] = _mm512_permutexvar_epi32(index1, r[0]); |
|
d[1] = _mm512_permutexvar_epi32(index1, r[1]); |
|
d[2] = _mm512_permutexvar_epi32(index1, r[2]); |
|
d[3] = _mm512_permutexvar_epi32(index1, r[3]); |
|
|
|
r[0] = _mm512_shuffle_i32x4(d[0], d[1], 0x44); |
|
r[1] = _mm512_shuffle_i32x4(d[0], d[1], 0xee); |
|
r[2] = _mm512_shuffle_i32x4(d[2], d[3], 0x44); |
|
r[3] = _mm512_shuffle_i32x4(d[2], d[3], 0xee); |
|
|
|
d[0] = _mm512_shuffle_i32x4(r[0], r[2], 0x88); |
|
d[1] = _mm512_shuffle_i32x4(r[0], r[2], 0xdd); |
|
d[2] = _mm512_shuffle_i32x4(r[1], r[3], 0x88); |
|
d[3] = _mm512_shuffle_i32x4(r[1], r[3], 0xdd); |
|
} |
|
|
|
inline void transpose_16x16_32bit(__m512i * v) { |
|
__m512i v1[16]; |
|
v1[0] = _mm512_unpacklo_epi32(v[0], v[1]); |
|
v1[1] = _mm512_unpackhi_epi32(v[0], v[1]); |
|
v1[2] = _mm512_unpacklo_epi32(v[2], v[3]); |
|
v1[3] = _mm512_unpackhi_epi32(v[2], v[3]); |
|
v1[4] = _mm512_unpacklo_epi32(v[4], v[5]); |
|
v1[5] = _mm512_unpackhi_epi32(v[4], v[5]); |
|
v1[6] = _mm512_unpacklo_epi32(v[6], v[7]); |
|
v1[7] = _mm512_unpackhi_epi32(v[6], v[7]); |
|
v1[8] = _mm512_unpacklo_epi32(v[8], v[9]); |
|
v1[9] = _mm512_unpackhi_epi32(v[8], v[9]); |
|
v1[10] = _mm512_unpacklo_epi32(v[10], v[11]); |
|
v1[11] = _mm512_unpackhi_epi32(v[10], v[11]); |
|
v1[12] = _mm512_unpacklo_epi32(v[12], v[13]); |
|
v1[13] = _mm512_unpackhi_epi32(v[12], v[13]); |
|
v1[14] = _mm512_unpacklo_epi32(v[14], v[15]); |
|
v1[15] = _mm512_unpackhi_epi32(v[14], v[15]); |
|
|
|
v[0] = _mm512_unpacklo_epi64(v1[0], v1[2]); |
|
v[1] = _mm512_unpackhi_epi64(v1[0], v1[2]); |
|
v[2] = _mm512_unpacklo_epi64(v1[1], v1[3]); |
|
v[3] = _mm512_unpackhi_epi64(v1[1], v1[3]); |
|
v[4] = _mm512_unpacklo_epi64(v1[4], v1[6]); |
|
v[5] = _mm512_unpackhi_epi64(v1[4], v1[6]); |
|
v[6] = _mm512_unpacklo_epi64(v1[5], v1[7]); |
|
v[7] = _mm512_unpackhi_epi64(v1[5], v1[7]); |
|
v[8] = _mm512_unpacklo_epi64(v1[8], v1[10]); |
|
v[9] = _mm512_unpackhi_epi64(v1[8], v1[10]); |
|
v[10] = _mm512_unpacklo_epi64(v1[9], v1[11]); |
|
v[11] = _mm512_unpackhi_epi64(v1[9], v1[11]); |
|
v[12] = _mm512_unpacklo_epi64(v1[12], v1[14]); |
|
v[13] = _mm512_unpackhi_epi64(v1[12], v1[14]); |
|
v[14] = _mm512_unpacklo_epi64(v1[13], v1[15]); |
|
v[15] = _mm512_unpackhi_epi64(v1[13], v1[15]); |
|
|
|
v1[0] = _mm512_shuffle_i32x4(v[0], v[4], 0x88); |
|
v1[1] = _mm512_shuffle_i32x4(v[1], v[5], 0x88); |
|
v1[2] = _mm512_shuffle_i32x4(v[2], v[6], 0x88); |
|
v1[3] = _mm512_shuffle_i32x4(v[3], v[7], 0x88); |
|
v1[4] = _mm512_shuffle_i32x4(v[0], v[4], 0xdd); |
|
v1[5] = _mm512_shuffle_i32x4(v[1], v[5], 0xdd); |
|
v1[6] = _mm512_shuffle_i32x4(v[2], v[6], 0xdd); |
|
v1[7] = _mm512_shuffle_i32x4(v[3], v[7], 0xdd); |
|
v1[8] = _mm512_shuffle_i32x4(v[8], v[12], 0x88); |
|
v1[9] = _mm512_shuffle_i32x4(v[9], v[13], 0x88); |
|
v1[10] = _mm512_shuffle_i32x4(v[10], v[14], 0x88); |
|
v1[11] = _mm512_shuffle_i32x4(v[11], v[15], 0x88); |
|
v1[12] = _mm512_shuffle_i32x4(v[8], v[12], 0xdd); |
|
v1[13] = _mm512_shuffle_i32x4(v[9], v[13], 0xdd); |
|
v1[14] = _mm512_shuffle_i32x4(v[10], v[14], 0xdd); |
|
v1[15] = _mm512_shuffle_i32x4(v[11], v[15], 0xdd); |
|
|
|
v[0] = _mm512_shuffle_i32x4(v1[0], v1[8], 0x88); |
|
v[1] = _mm512_shuffle_i32x4(v1[1], v1[9], 0x88); |
|
v[2] = _mm512_shuffle_i32x4(v1[2], v1[10], 0x88); |
|
v[3] = _mm512_shuffle_i32x4(v1[3], v1[11], 0x88); |
|
v[4] = _mm512_shuffle_i32x4(v1[4], v1[12], 0x88); |
|
v[5] = _mm512_shuffle_i32x4(v1[5], v1[13], 0x88); |
|
v[6] = _mm512_shuffle_i32x4(v1[6], v1[14], 0x88); |
|
v[7] = _mm512_shuffle_i32x4(v1[7], v1[15], 0x88); |
|
v[8] = _mm512_shuffle_i32x4(v1[0], v1[8], 0xdd); |
|
v[9] = _mm512_shuffle_i32x4(v1[1], v1[9], 0xdd); |
|
v[10] = _mm512_shuffle_i32x4(v1[2], v1[10], 0xdd); |
|
v[11] = _mm512_shuffle_i32x4(v1[3], v1[11], 0xdd); |
|
v[12] = _mm512_shuffle_i32x4(v1[4], v1[12], 0xdd); |
|
v[13] = _mm512_shuffle_i32x4(v1[5], v1[13], 0xdd); |
|
v[14] = _mm512_shuffle_i32x4(v1[6], v1[14], 0xdd); |
|
v[15] = _mm512_shuffle_i32x4(v1[7], v1[15], 0xdd); |
|
} |
|
|
|
void quantize_row_q8_K_vnni(const float * RESTRICT x, void * RESTRICT vy, int64_t k) { |
|
assert(k % QK_K == 0); |
|
const int KB = k / QK_K; |
|
constexpr int kVecs = QK_K / 16; |
|
|
|
block_q8_K * y = reinterpret_cast<block_q8_K *>(vy); |
|
|
|
|
|
__m512 v[kVecs]; |
|
|
|
|
|
__m512i vq[kVecs / 4]; |
|
|
|
|
|
__m512i vq_packed[kVecs / 4]; |
|
|
|
const __m512 signBit = _mm512_set1_ps(-0.f); |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
|
|
__m512 vamax = _mm512_set1_ps(0.f); |
|
for (int j = 0; j < kVecs; ++j) { |
|
v[j] = _mm512_loadu_ps(x); x += 16; |
|
vamax = _mm512_max_ps(vamax, _mm512_andnot_ps(signBit, v[j])); |
|
} |
|
const float amax = _mm512_reduce_max_ps(vamax); |
|
|
|
|
|
const float iscale = 127.f / amax; |
|
y[i].d = GGML_FP32_TO_FP16(1 / iscale); |
|
const float id = ( amax != 0.0f ) ? iscale : 0.f; |
|
const __m512 vscale = _mm512_set1_ps(id); |
|
|
|
|
|
for (int j = 0; j < kVecs; ++j) { |
|
v[j] = _mm512_mul_ps(v[j], vscale); |
|
v[j] = _mm512_roundscale_ps(v[j], (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); |
|
} |
|
|
|
|
|
for (int j = 0; j < kVecs / 4; ++j) { |
|
__m128i q8_0 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 0])); |
|
__m128i q8_1 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 1])); |
|
__m128i q8_2 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 2])); |
|
__m128i q8_3 = _mm512_cvtepi32_epi8(_mm512_cvtps_epi32(v[j * 4 + 3])); |
|
|
|
__m256i q8_01 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_0), (q8_1), 1); |
|
__m256i q8_23 = _mm256_insertf128_si256(_mm256_castsi128_si256(q8_2), (q8_3), 1); |
|
|
|
vq[j] = _mm512_inserti32x8(_mm512_castsi256_si512(q8_01), q8_23, 1); |
|
_mm512_storeu_si512((__m512i *)(y[i].qs + j * 64), vq[j]); |
|
} |
|
|
|
|
|
transpose_16x4_32bit(vq, vq_packed); |
|
|
|
const __m512i one = _mm512_set1_epi8(1); |
|
__m512i sum = _mm512_setzero_si512(); |
|
for (int k = 0; k < 4; ++k) { |
|
sum = _mm512_dpbusd_epi32(sum, one, vq_packed[k]); |
|
} |
|
_mm256_storeu_si256((__m256i *)(y[i].bsums), _mm512_cvtepi32_epi16(sum)); |
|
} |
|
} |
|
|
|
|
|
template <typename T> |
|
inline void from_float(const float * x, char * vy, int64_t k); |
|
|
|
template <> |
|
inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) { |
|
quantize_row_q8_0(x, (block_q8_0 *)vy, k); |
|
} |
|
|
|
template <> |
|
inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) { |
|
quantize_row_q8_1(x, (block_q8_1 *)vy, k); |
|
} |
|
|
|
template <> |
|
inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) { |
|
#if 1 |
|
|
|
quantize_row_q8_K_ref(x, (block_q8_K *)vy, k); |
|
#else |
|
quantize_row_q8_K_vnni(x, vy, k); |
|
#endif |
|
} |
|
|
|
|
|
void unpack_A(int8_t * RESTRICT tile, const block_q8_0 * RESTRICT A, int lda, int nr) { |
|
assert(nr != TILE_M); |
|
for (int m = 0; m < nr; ++m) { |
|
const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); |
|
_mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); |
|
} |
|
} |
|
|
|
void unpack_A(int8_t * RESTRICT tile, const block_q8_1 * RESTRICT A, int lda, int nr) { |
|
assert(nr != TILE_M); |
|
for (int m = 0; m < nr; ++m) { |
|
const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs)); |
|
_mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); |
|
} |
|
} |
|
|
|
template <typename TB> |
|
void unpack_A(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { |
|
assert(nr <= TILE_M); |
|
for (int m = 0; m < nr; ++m) { |
|
const __m256i v = _mm256_loadu_si256((const __m256i *)(A[m * lda].qs + k * 32)); |
|
_mm256_storeu_si256((__m256i *)(tile + m * TILE_K), v); |
|
} |
|
} |
|
|
|
template <> |
|
void unpack_A<block_q6_K>(int8_t * RESTRICT tile, const block_q8_K * RESTRICT A, int lda, int k, int nr) { |
|
assert(nr <= TILE_M); |
|
|
|
const __m128i zero = _mm_setzero_si128(); |
|
for (int m = 0; m < nr; ++m) { |
|
const __m128i v = _mm_loadu_si128((const __m128i *)(A[m * lda].qs + k * 16)); |
|
const __m256i r = _mm256_insertf128_si256(_mm256_castsi128_si256(v), zero, 1); |
|
_mm256_storeu_si256((__m256i *)(tile + m * TILE_K), r); |
|
} |
|
} |
|
|
|
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) |
|
inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) { |
|
const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); |
|
const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); |
|
const __m256i lowMask = _mm256_set1_epi8(0xF); |
|
return _mm256_and_si256(lowMask, bytes); |
|
} |
|
|
|
|
|
inline __m512i bytes_from_nibbles_64(const uint8_t * rsi) { |
|
const __m256i tmp = _mm256_loadu_si256((const __m256i *)rsi); |
|
const __m256i lowMask = _mm256_set1_epi8(0xF); |
|
const __m256i q4l = _mm256_and_si256(tmp, lowMask); |
|
const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(tmp, 4), lowMask); |
|
return _mm512_inserti32x8(_mm512_castsi256_si512(q4l), q4h, 1); |
|
} |
|
|
|
|
|
inline __m512i bytes_from_nibbles_64(const uint8_t * qs, const uint8_t * qh, int k) { |
|
const __m256i lowMask = _mm256_set1_epi8(0xF); |
|
__m256i hmask = _mm256_set1_epi8(1); |
|
hmask = _mm256_slli_epi16(hmask, k); |
|
|
|
const __m256i q5bits = _mm256_loadu_si256((const __m256i *)qs); |
|
const __m256i hbits = _mm256_loadu_si256((const __m256i *)qh); |
|
|
|
const __m256i q5l_0 = _mm256_and_si256(q5bits, lowMask); |
|
const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 0), 4); |
|
const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); |
|
hmask = _mm256_slli_epi16(hmask, 1); |
|
|
|
const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), lowMask); |
|
const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), k + 1), 4); |
|
const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); |
|
|
|
return _mm512_inserti32x8(_mm512_castsi256_si512(q5_0), q5_1, 1); |
|
} |
|
|
|
|
|
inline void bytes_from_nibbles_128(__m512i& r0, __m512i& r1, const uint8_t * qs, const uint8_t * qh) { |
|
const __m256i m4 = _mm256_set1_epi8(0xF); |
|
const __m256i m2 = _mm256_set1_epi8(0x3); |
|
|
|
const __m256i q6bits1 = _mm256_loadu_si256((const __m256i *)qs); |
|
const __m256i q6bits2 = _mm256_loadu_si256((const __m256i *)(qs + 32)); |
|
const __m256i q6bitsH = _mm256_loadu_si256((const __m256i *)qh); |
|
|
|
const __m256i q6h_0 = _mm256_slli_epi16(_mm256_and_si256( q6bitsH, m2), 4); |
|
const __m256i q6h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 2), m2), 4); |
|
const __m256i q6h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 4), m2), 4); |
|
const __m256i q6h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q6bitsH, 6), m2), 4); |
|
|
|
const __m256i q6_0 = _mm256_or_si256(_mm256_and_si256(q6bits1, m4), q6h_0); |
|
const __m256i q6_1 = _mm256_or_si256(_mm256_and_si256(q6bits2, m4), q6h_1); |
|
const __m256i q6_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits1, 4), m4), q6h_2); |
|
const __m256i q6_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q6bits2, 4), m4), q6h_3); |
|
|
|
r0 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_0), q6_1, 1); |
|
r1 = _mm512_inserti32x8(_mm512_castsi256_si512(q6_2), q6_3, 1); |
|
} |
|
|
|
inline __m512i packNibbles(__m512i r0, __m512i r1) { |
|
return _mm512_or_si512(r0, _mm512_slli_epi16(r1, 4)); |
|
} |
|
|
|
template <typename TB> |
|
inline void pack_qs(void * RESTRICT packed_B, const TB * RESTRICT B, int KB) { |
|
int8_t tmp[8 * 64]; |
|
__m256i v[8], v2[8]; |
|
for (int n = 0; n < 8; ++n) { |
|
v[n] = bytes_from_nibbles_32(B[n * KB].qs); |
|
} |
|
transpose_8x8_32bit(v, v2); |
|
for (int n = 0; n < 8; ++n) { |
|
_mm256_storeu_si256((__m256i *)(tmp + n * 64), v2[n]); |
|
} |
|
for (int n = 0; n < 8; ++n) { |
|
v[n] = bytes_from_nibbles_32(B[(n + 8) * KB].qs); |
|
} |
|
transpose_8x8_32bit(v, v2); |
|
for (int n = 0; n < 8; ++n) { |
|
_mm256_storeu_si256((__m256i *)(tmp + n * 64 + 32), v2[n]); |
|
} |
|
|
|
|
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i r0 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64)); |
|
__m512i r1 = _mm512_loadu_si512((const __m512i *)(tmp + n * 64 + 64)); |
|
__m512i r1r0 = packNibbles(r0, r1); |
|
_mm512_storeu_si512((__m512i *)((char *)packed_B + n * 32), r1r0); |
|
} |
|
} |
|
|
|
template <> |
|
inline void pack_qs<block_q8_0>(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { |
|
__m256i v[8], v2[8]; |
|
for (int n = 0; n < 8; ++n) { |
|
v[n] = _mm256_loadu_si256((const __m256i *)(B[n * KB].qs)); |
|
} |
|
transpose_8x8_32bit(v, v2); |
|
for (int n = 0; n < 8; ++n) { |
|
_mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64), v2[n]); |
|
} |
|
for (int n = 0; n < 8; ++n) { |
|
v[n] = _mm256_loadu_si256((const __m256i *)(B[(n + 8) * KB].qs)); |
|
} |
|
transpose_8x8_32bit(v, v2); |
|
for (int n = 0; n < 8; ++n) { |
|
_mm256_storeu_si256((__m256i *)((char *)packed_B + n * 64 + 32), v2[n]); |
|
} |
|
} |
|
|
|
template <> |
|
inline void pack_qs<block_q4_K>(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { |
|
__m512i v[16]; |
|
|
|
char * pb = (char *)packed_B; |
|
for (int k = 0; k < QK_K / 64; ++k) { |
|
|
|
|
|
for (int n = 0; n < TILE_N; ++n) { |
|
v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32); |
|
} |
|
|
|
transpose_16x16_32bit(v); |
|
|
|
|
|
for (int n = 0; n < TILE_N; n += 2) { |
|
_mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); |
|
pb += 64; |
|
} |
|
} |
|
} |
|
|
|
template <> |
|
inline void pack_qs<block_q5_K>(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { |
|
__m512i v[16]; |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
char * pb = (char *)packed_B; |
|
char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; |
|
for (int k = 0; k < QK_K / 64; ++k) { |
|
|
|
|
|
for (int n = 0; n < TILE_N; ++n) { |
|
v[n] = bytes_from_nibbles_64(B[n * KB].qs + k * 32, B[n * KB].qh, 2 * k); |
|
} |
|
|
|
transpose_16x16_32bit(v); |
|
|
|
|
|
for (int n = 0; n < TILE_N; n += 2) { |
|
|
|
const __m512i r0 = _mm512_and_si512(v[n], lowMask); |
|
const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); |
|
_mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; |
|
} |
|
|
|
|
|
const __m512i hmask = _mm512_set1_epi8(0x10); |
|
for (int g = 0; g < 2; ++g) { |
|
__m512i hbits = _mm512_setzero_si512(); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 0], hmask), 4)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 1], hmask), 3)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 2], hmask), 2)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 8 + 3], hmask), 1)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 8 + 4], hmask) ); |
|
hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 5], hmask), 1)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 6], hmask), 2)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 8 + 7], hmask), 3)); |
|
_mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; |
|
} |
|
} |
|
} |
|
|
|
template <> |
|
inline void pack_qs<block_q6_K>(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { |
|
__m512i v[32]; |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
char * pb = (char *)packed_B; |
|
char * ph = (char *)packed_B + (QK_K / 2) * TILE_N; |
|
for (int k = 0; k < QK_K / 128; ++k) { |
|
for (int n = 0; n < TILE_N; ++n) { |
|
bytes_from_nibbles_128(v[n], v[n + 16], B[n * KB].ql + k * 64, B[n * KB].qh + k * 32); |
|
} |
|
|
|
|
|
transpose_16x16_32bit(v); |
|
transpose_16x16_32bit(v + 16); |
|
|
|
|
|
for (int n = 0; n < 32; n += 2) { |
|
const __m512i r0 = _mm512_and_si512(v[n], lowMask); |
|
const __m512i r1 = _mm512_and_si512(v[n + 1], lowMask); |
|
_mm512_storeu_si512((__m512i *)pb, packNibbles(r0, r1)); pb += 64; |
|
} |
|
|
|
|
|
const __m512i hmask = _mm512_set1_epi8(0x30); |
|
for (int g = 0; g < 8; ++g) { |
|
__m512i hbits = _mm512_setzero_si512(); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 0], hmask), 4)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_srli_epi16(_mm512_and_si512(v[g * 4 + 1], hmask), 2)); |
|
hbits = _mm512_add_epi8(hbits, _mm512_and_si512(v[g * 4 + 2], hmask) ); |
|
hbits = _mm512_add_epi8(hbits, _mm512_slli_epi16(_mm512_and_si512(v[g * 4 + 3], hmask), 2)); |
|
_mm512_storeu_si512((__m512i *)ph, hbits); ph += 64; |
|
} |
|
} |
|
} |
|
|
|
template <> |
|
inline void pack_qs<block_iq4_xs>(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { |
|
__m512i v[16]; |
|
char * pb = (char *)packed_B; |
|
for (int k = 0; k < QK_K / 64; ++k) { |
|
for (int n = 0; n < TILE_N; ++n) { |
|
__m256i r0 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 0); |
|
__m256i r1 = bytes_from_nibbles_32(B[n * KB].qs + k * 32 + 16); |
|
v[n] = _mm512_inserti32x8(_mm512_castsi256_si512(r0), r1, 1); |
|
} |
|
|
|
transpose_16x16_32bit(v); |
|
|
|
|
|
for (int n = 0; n < TILE_N; n += 2) { |
|
_mm512_storeu_si512((__m512i *)pb, packNibbles(v[n], v[n + 1])); |
|
pb += 64; |
|
} |
|
} |
|
} |
|
|
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q4_0 * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2); |
|
for (int n = 0; n < TILE_N; ++n) { |
|
d0[n] = B[n * KB].d; |
|
} |
|
} |
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q4_1 * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K / 2); |
|
ggml_half * m0 = d0 + TILE_N; |
|
for (int n = 0; n < TILE_N; ++n) { |
|
d0[n] = B[n * KB].d; |
|
m0[n] = B[n * KB].m; |
|
} |
|
} |
|
|
|
inline void s8s8_compensation(void * RESTRICT packed_B) { |
|
|
|
|
|
|
|
|
|
const int offset = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); |
|
__m512i vcomp = _mm512_setzero_si512(); |
|
const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); |
|
for (int k = 0; k < 8; ++k) { |
|
__m512i vb = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + k * 64)); |
|
vcomp = _mm512_dpbusd_epi32(vcomp, off, vb); |
|
} |
|
_mm512_storeu_si512((__m512i *)((char *)(packed_B) + offset), vcomp); |
|
} |
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q8_0 * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
ggml_half * d0 = reinterpret_cast<ggml_half *>((char *)packed_B + TILE_N * TILE_K); |
|
for (int n = 0; n < TILE_N; ++n) { |
|
d0[n] = B[n * KB].d; |
|
} |
|
s8s8_compensation(packed_B); |
|
} |
|
|
|
|
|
inline void unpack_mins_and_scales(const uint8_t * scales, uint32_t * utmp) { |
|
const uint32_t kmask1 = 0x3f3f3f3f; |
|
const uint32_t kmask2 = 0x0f0f0f0f; |
|
const uint32_t kmask3 = 0x03030303; |
|
|
|
memcpy(utmp, scales, 12); |
|
utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); |
|
const uint32_t uaux = utmp[1] & kmask1; |
|
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); |
|
utmp[2] = uaux; |
|
utmp[0] &= kmask1; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q4_K * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
|
|
uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N); |
|
uint8_t * mins = scales + 8 * TILE_N; |
|
ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N); |
|
ggml_half * dmin = d + TILE_N; |
|
|
|
union { |
|
uint32_t u32[4]; |
|
uint8_t u8[16]; |
|
} s; |
|
|
|
for (int n = 0; n < TILE_N; ++n) { |
|
unpack_mins_and_scales(B[n * KB].scales, s.u32); |
|
for (int k = 0; k < 8; ++k) { |
|
scales[k * TILE_N + n] = s.u8[k]; |
|
mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; |
|
} |
|
d[n] = B[n * KB].d; |
|
dmin[n] = B[n * KB].dmin; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q5_K * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
|
|
uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); |
|
uint8_t * mins = scales + 8 * TILE_N; |
|
ggml_half * d = reinterpret_cast<ggml_half *>(mins + 8 * TILE_N); |
|
ggml_half * dmin = d + TILE_N; |
|
|
|
union { |
|
uint32_t u32[4]; |
|
uint8_t u8[16]; |
|
} s; |
|
|
|
for (int n = 0; n < TILE_N; ++n) { |
|
unpack_mins_and_scales(B[n * KB].scales, s.u32); |
|
for (int k = 0; k < 8; ++k) { |
|
scales[k * TILE_N + n] = s.u8[k]; |
|
mins[(k >> 1) * TILE_N * 2 + n * 2 + (k & 0x1)] = s.u8[k + 8]; |
|
} |
|
d[n] = B[n * KB].d; |
|
dmin[n] = B[n * KB].dmin; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
void pack_B(void * RESTRICT packed_B, const block_q6_K * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
|
|
uint8_t * scales = reinterpret_cast<uint8_t *>((char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); |
|
ggml_half * d = reinterpret_cast<ggml_half *>(scales + 16 * TILE_N); |
|
for (int n = 0; n < TILE_N; ++n) { |
|
const int8_t * ps = B[n * KB].scales; |
|
for (int k = 0; k < 16; ++k) { |
|
scales[k * TILE_N + n] = ps[k]; |
|
} |
|
d[n] = B[n * KB].d; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
void pack_B(void * RESTRICT packed_B, const block_iq4_xs * RESTRICT B, int KB) { |
|
pack_qs(packed_B, B, KB); |
|
|
|
int8_t * scales = reinterpret_cast<int8_t *>((char *)packed_B + (QK_K / 2) * TILE_N); |
|
ggml_half * d = reinterpret_cast<ggml_half *>(scales + 8 * TILE_N); |
|
|
|
|
|
for (int n = 0; n < TILE_N; ++n) { |
|
uint16_t sh = B[n * KB].scales_h; |
|
for (int k = 0; k < 8; k += 2) { |
|
const int16_t ls1 = ((B[n * KB].scales_l[k / 2] & 0xf) | ((sh << 4) & 0x30)) - 32; |
|
const int16_t ls2 = ((B[n * KB].scales_l[k / 2] >> 4) | ((sh << 2) & 0x30)) - 32; |
|
scales[(k + 0) * TILE_N + n] = ls1; |
|
scales[(k + 1) * TILE_N + n] = ls2; |
|
sh >>= 4; |
|
} |
|
d[n] = B[n * KB].d; |
|
} |
|
} |
|
|
|
template<typename TB, typename packed_B_t = packed_B_type<TB>> |
|
void unpack_B(packed_B_t * RESTRICT tile, const void * RESTRICT packed_B) { |
|
GGML_UNUSED(tile); |
|
GGML_UNUSED(packed_B); |
|
} |
|
|
|
template <> |
|
void unpack_B<block_q4_0>(int8_t * RESTRICT tile, const void * RESTRICT packed_B) { |
|
const __m512i off = _mm512_set1_epi8(8); |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); |
|
const __m512i r0 = _mm512_sub_epi8(_mm512_and_si512(bytes, lowMask), off); |
|
const __m512i r1 = _mm512_sub_epi8(_mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask), off); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); |
|
} |
|
} |
|
|
|
template <> |
|
void unpack_B<block_q4_1>(uint8_t * RESTRICT tile, const void * RESTRICT packed_B) { |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)((const char *)packed_B + n * 32)); |
|
const __m512i r0 = _mm512_and_si512(bytes, lowMask); |
|
const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); |
|
} |
|
} |
|
|
|
|
|
template <typename TB> |
|
void unpack_B(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { |
|
const int packed_B_group_size = QK_K / 2 * TILE_N / 8; |
|
const char * packed_B_group = (const char *)packed_B + k * packed_B_group_size; |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i bytes = _mm512_loadu_si512(packed_B_group + n * 32); |
|
const __m512i r0 = _mm512_and_si512(bytes, lowMask); |
|
const __m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); |
|
} |
|
} |
|
|
|
template <> |
|
void unpack_B<block_q5_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { |
|
|
|
const int packed_l4_group_size = QK_K / 2 * TILE_N / 8; |
|
const char * pb = (const char *)packed_B + k * packed_l4_group_size; |
|
|
|
|
|
const int packed_h1_group_size = QK_K / 8 * TILE_N / 8; |
|
const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h1_group_size; |
|
const __m512i hbits = _mm512_loadu_si512(ph); |
|
|
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
__m512i hmask0 = _mm512_set1_epi8(0x1); |
|
__m512i hmask1 = _mm512_set1_epi8(0x2); |
|
|
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i bytes = _mm512_loadu_si512(pb + n * 32); |
|
__m512i r0 = _mm512_and_si512(bytes, lowMask); |
|
__m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
__m512i h0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), n), 4); |
|
__m512i h1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), n + 1), 4); |
|
|
|
hmask0 = _mm512_slli_epi16(hmask0, 2); |
|
hmask1 = _mm512_slli_epi16(hmask1, 2); |
|
r0 = _mm512_add_epi8(r0, h0); |
|
r1 = _mm512_add_epi8(r1, h1); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); |
|
} |
|
} |
|
|
|
template <> |
|
void unpack_B<block_q6_K>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { |
|
|
|
const int packed_l4_group_size = QK_K / 2 * TILE_N / 16; |
|
const char * pb = (const char *)packed_B + k * packed_l4_group_size; |
|
|
|
|
|
const int packed_h2_group_size = QK_K / 4 * TILE_N / 16; |
|
const char * ph = (const char *)packed_B + (QK_K / 2) * TILE_N + k * packed_h2_group_size; |
|
const __m512i hbits = _mm512_loadu_si512(ph); |
|
|
|
const __m512i off = _mm512_set1_epi8(32); |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
__m512i hmask0 = _mm512_set1_epi8(0x3); |
|
__m512i hmask1 = _mm512_set1_epi8(0xC); |
|
|
|
|
|
__m512i bytes = _mm512_loadu_si512(pb); |
|
__m512i r0 = _mm512_and_si512(bytes, lowMask); |
|
__m512i r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
__m512i h0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask0), 4); |
|
__m512i h1 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask1), 2); |
|
_mm512_storeu_si512((__m512i *)(tile + 0), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); |
|
_mm512_storeu_si512((__m512i *)(tile + 64), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); |
|
|
|
hmask0 = _mm512_slli_epi16(hmask0, 4); |
|
hmask1 = _mm512_slli_epi16(hmask1, 4); |
|
|
|
bytes = _mm512_loadu_si512(pb + 64); |
|
r0 = _mm512_and_si512(bytes, lowMask); |
|
r1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
h0 = _mm512_and_si512(hbits, hmask0); |
|
h1 = _mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), 2); |
|
_mm512_storeu_si512((__m512i *)(tile + 128), _mm512_sub_epi8(_mm512_add_epi8(r0, h0), off)); |
|
_mm512_storeu_si512((__m512i *)(tile + 192), _mm512_sub_epi8(_mm512_add_epi8(r1, h1), off)); |
|
} |
|
|
|
template <> |
|
void unpack_B<block_iq4_xs>(int8_t * RESTRICT tile, const void * RESTRICT packed_B, int k) { |
|
static const __m512i values128 = _mm512_set_epi8( |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 |
|
); |
|
|
|
const int packed_B_group_size = QK_K / 2 * TILE_N / 8; |
|
const char * pb = (const char *)packed_B + k * packed_B_group_size; |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
for (int n = 0; n < 8; n += 2) { |
|
__m512i bytes = _mm512_loadu_si512(pb + n * 32); |
|
const __m512i r0 = _mm512_shuffle_epi8(values128, _mm512_and_si512(bytes, lowMask)); |
|
const __m512i r1 = _mm512_shuffle_epi8(values128, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 0), r0); |
|
_mm512_storeu_si512((__m512i *)(tile + n * 64 + 64), r1); |
|
} |
|
} |
|
|
|
template <typename TA, typename TB, bool is_acc> |
|
struct acc_C {}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_0, block_q4_0, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { |
|
const int offset = TILE_N * TILE_K / 2; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_1, block_q4_1, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_1 * A, int lda, const void * packed_B, int nr) { |
|
const int offset = TILE_N * TILE_K / 2; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); |
|
const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset + TILE_N * sizeof(ggml_half)))); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); |
|
const __m512 vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].s)); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); |
|
vsum = _mm512_fmadd_ps(vm0, vs1, vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_0, block_q8_0, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_0 * A, int lda, const void * packed_B, int nr) { |
|
const int offset = TILE_N * TILE_K; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)((const char *)packed_B + offset))); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const __m512 vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[m * lda].d)); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
vsum = _mm512_fmadd_ps(vtile, _mm512_mul_ps(vd0, vd1), vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_K, block_q4_K, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { |
|
const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N); |
|
const uint8_t * mins = scales + 8 * TILE_N; |
|
const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N); |
|
const ggml_half * dmin = d0 + TILE_N; |
|
|
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); |
|
const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const float d1 = A[m * lda].d; |
|
const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); |
|
const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
|
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); |
|
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
|
|
|
__m512i acc_m = _mm512_setzero_si512(); |
|
for (int k = 0; k < 4; ++k) { |
|
__m512i vmask = _mm512_set1_epi32(k); |
|
__m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); |
|
__m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); |
|
acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); |
|
} |
|
|
|
vsum = _mm512_fmadd_ps(vtile, vd, vsum); |
|
vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_K, block_q5_K, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { |
|
const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N); |
|
const uint8_t * mins = scales + 8 * TILE_N; |
|
const ggml_half * d0 = reinterpret_cast<const ggml_half *>(mins + 8 * TILE_N); |
|
const ggml_half * dmin = d0 + TILE_N; |
|
|
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); |
|
const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)dmin)); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const float d1 = A[m * lda].d; |
|
const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); |
|
const __m512 vdm = _mm512_mul_ps(_mm512_set1_ps(-d1), vdmin); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
|
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[m * lda].bsums); |
|
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
|
|
|
__m512i acc_m = _mm512_setzero_si512(); |
|
for (int k = 0; k < 4; ++k) { |
|
__m512i vmask = _mm512_set1_epi32(k); |
|
__m512i va = _mm512_permutexvar_epi32(vmask, _mm512_castsi128_si512(q8s)); |
|
__m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(mins + k * 32))); |
|
acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); |
|
} |
|
|
|
vsum = _mm512_fmadd_ps(vtile, vd, vsum); |
|
vsum = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc_m), vdm, vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_K, block_q6_K, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { |
|
const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N); |
|
const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 16 * TILE_N); |
|
|
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const float d1 = A[m * lda].d; |
|
const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
|
|
vsum = _mm512_fmadd_ps(vtile, vd, vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <bool is_acc> |
|
struct acc_C<block_q8_K, block_iq4_xs, is_acc> { |
|
static void apply(float * RESTRICT C, int ldc, const int32_t * RESTRICT tile, const block_q8_K * A, int lda, const void * packed_B, int nr) { |
|
const int8_t * scales = reinterpret_cast<const int8_t *>((const char *)packed_B + (QK_K / 2) * TILE_N); |
|
const ggml_half * d0 = reinterpret_cast<const ggml_half *>(scales + 8 * TILE_N); |
|
|
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)d0)); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
const float d1 = A[m * lda].d; |
|
const __m512 vd = _mm512_mul_ps(_mm512_set1_ps(d1), vd0); |
|
const __m512 vtile = _mm512_cvtepi32_ps(_mm512_loadu_si512(tile + m * TILE_N)); |
|
|
|
__m512 vsum; |
|
if (is_acc) { |
|
vsum = _mm512_loadu_ps(C + m * ldc); |
|
} else { |
|
vsum = _mm512_set1_ps(0.f); |
|
} |
|
|
|
vsum = _mm512_fmadd_ps(vtile, vd, vsum); |
|
_mm512_storeu_ps(C + m * ldc, vsum); |
|
} |
|
} |
|
}; |
|
|
|
template <typename TB> constexpr int get_quants_size(); |
|
template <> constexpr int get_quants_size<block_q4_K>() { return (QK_K / 2) * TILE_N; } |
|
template <> constexpr int get_quants_size<block_q5_K>() { return (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; } |
|
template <> constexpr int get_quants_size<block_q6_K>() { return (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; } |
|
template <> constexpr int get_quants_size<block_iq4_xs>() { return (QK_K / 2) * TILE_N; } |
|
|
|
|
|
template <typename TB, bool is_acc, |
|
typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0> |
|
inline void scale_C(const int32_t * RESTRICT tile, int32_t * RESTRICT sumi, const void * packed_B, int k, int nr) { |
|
const uint8_t * scales = reinterpret_cast<const uint8_t *>((const char *)packed_B + get_quants_size<TB>()); |
|
const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(scales + k * TILE_N))); |
|
|
|
for (int m = 0; m < nr; ++m) { |
|
__m512i vsumi; |
|
if (is_acc) { |
|
vsumi = _mm512_loadu_si512(sumi + m * TILE_N); |
|
} else { |
|
vsumi = _mm512_setzero_si512(); |
|
} |
|
__m512i vtile = _mm512_loadu_si512(tile + m * TILE_N); |
|
vsumi = _mm512_add_epi32(vsumi, _mm512_mullo_epi32(vtile, vscale)); |
|
_mm512_storeu_si512((__m512i *)(sumi + m * TILE_N), vsumi); |
|
} |
|
} |
|
|
|
template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_avx { |
|
static void apply(int K, const TA * RESTRICT A, const TB * RESTRICT B, TC * RESTRICT C, int ldc) { |
|
GGML_UNUSED(K); |
|
GGML_UNUSED(A); |
|
GGML_UNUSED(B); |
|
GGML_UNUSED(C); |
|
GGML_UNUSED(ldc); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_avx<float, ggml_fp16_t, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int K, const float * RESTRICT A, const ggml_fp16_t * RESTRICT B, float * RESTRICT C, int ldc) { |
|
constexpr int ROWS = BLOCK_M; |
|
constexpr int COLS = BLOCK_N; |
|
assert(BLOCK_K == 16); |
|
|
|
__m512 va; |
|
__m512 vb[COLS]; |
|
__m512 vc[ROWS * COLS]; |
|
|
|
auto loadc = [&](auto idx) { |
|
vc[idx] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<ROWS * COLS>{}(loadc); |
|
|
|
auto compute = [&](auto idx, auto k) { |
|
constexpr int row = idx / COLS; |
|
constexpr int col = idx % COLS; |
|
|
|
if constexpr (col == 0) { |
|
va = _mm512_loadu_ps(A + row * K + k); |
|
} |
|
if constexpr (row == 0) { |
|
vb[col] = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(B + col * K + k))); |
|
} |
|
vc[idx] = _mm512_fmadd_ps(va, vb[col], vc[idx]); |
|
}; |
|
|
|
for (int k = 0; k < K; k += 16) { |
|
Unroll<ROWS * COLS>{}(compute, k); |
|
} |
|
|
|
auto storec = [&](auto idx) { |
|
constexpr int row = idx / COLS; |
|
constexpr int col = idx % COLS; |
|
C[row * ldc + col] = _mm512_reduce_add_ps(vc[idx]); |
|
}; |
|
Unroll<ROWS * COLS>{}(storec); |
|
} |
|
}; |
|
|
|
#define LAUNCH_TINYGEMM_KERNEL_AVX(MB_SIZE, NB_SIZE) \ |
|
tinygemm_kernel_avx<float, type, float, MB_SIZE, NB_SIZE, blck_size>::apply( \ |
|
K, (const float *)src1->data + mb_start * K, \ |
|
(const type *)src0->data + nb_start * K, \ |
|
(float *)dst->data + mb_start * ldc + nb_start, ldc); |
|
|
|
|
|
|
|
#define PACKED_INDEX(n, k, KB, tile_size) (n * KB + k) * tile_size |
|
|
|
template<typename TB, int BLOCK_K> |
|
void convert_B_packed_format(void * RESTRICT packed_B, const TB * RESTRICT B, int N, int K, int n_threads) { |
|
const int NB = N / TILE_N; |
|
const int KB = K / BLOCK_K; |
|
const int TILE_SIZE = get_tile_size<TB>(); |
|
|
|
|
|
parallel_for(n_threads, NB, [&](int begin, int end) { |
|
for (int n = begin; n < end; ++n) { |
|
for (int k = 0; k < KB; ++k) { |
|
int n0 = n * TILE_N; |
|
pack_B((char *)packed_B + PACKED_INDEX(n, k, KB, TILE_SIZE), &B[n0 * KB + k], KB); |
|
} |
|
} |
|
}); |
|
} |
|
|
|
template <typename TA, typename TB, typename TC, int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni {}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_0, block_q4_0, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q4_0); |
|
|
|
const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
__m512i va[8]; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__m512i vcomp; |
|
|
|
const __m512i off = _mm512_set1_epi8(8); |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
auto compute = [&](auto col, auto i) { |
|
|
|
if constexpr (col == 0) { |
|
const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); |
|
vcomp = _mm512_setzero_si512(); |
|
for (int k = 0; k < 8; ++k) { |
|
va[k] = _mm512_set1_epi32(a_ptr[k]); |
|
vcomp = _mm512_dpbusd_epi32(vcomp, off, va[k]); |
|
} |
|
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); |
|
} |
|
|
|
|
|
__m512i vsum = _mm512_setzero_si512(); |
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
for (int k = 0; k < 8; k += 2) { |
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); |
|
__m512i vb0 = _mm512_and_si512(bytes, lowMask); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va[k + 0]); |
|
__m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va[k + 1]); |
|
} |
|
const int offset = TILE_N * TILE_K / 2; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); |
|
vsum = _mm512_sub_epi32(vsum, vcomp); |
|
|
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_1, block_q4_1, float, 1, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q4_1); |
|
|
|
const block_q8_1 * RESTRICT A = static_cast<const block_q8_1 *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
__m512i va[8]; |
|
__m512i vb[8]; |
|
__m512 vc[COLS]; |
|
__m512 vd1, vs1; |
|
|
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
auto compute = [&](auto col, auto i) { |
|
|
|
if constexpr (col == 0) { |
|
const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); |
|
for (int k = 0; k < 8; ++k) { |
|
va[k] = _mm512_set1_epi32(a_ptr[k]); |
|
} |
|
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); |
|
vs1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].s)); |
|
} |
|
|
|
|
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
for (int k = 0; k < 8; k += 2) { |
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 32)); |
|
vb[k + 0] = _mm512_and_si512(bytes, lowMask); |
|
vb[k + 1] = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
} |
|
const int offset = TILE_N * TILE_K / 2; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); |
|
const __m512 vm0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset + TILE_N * sizeof(ggml_half)))); |
|
|
|
__m512i vsum = _mm512_setzero_si512(); |
|
for (int k = 0; k < 8; ++k) { |
|
vsum = _mm512_dpbusd_epi32(vsum, vb[k], va[k]); |
|
} |
|
|
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
vc[col] = _mm512_fmadd_ps(vm0, vs1, vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_0, block_q8_0, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q8_0) + TILE_N * sizeof(int32_t); |
|
|
|
const block_q8_0 * RESTRICT A = static_cast<const block_q8_0 *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
__m512i va[8]; |
|
__m512i vb[8]; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
auto compute = [&](auto col, auto i) { |
|
|
|
if constexpr (col == 0) { |
|
const int32_t * a_ptr = reinterpret_cast<const int32_t *>(A[0 * KB + i].qs); |
|
for (int k = 0; k < 8; ++k) { |
|
va[k] = _mm512_set1_epi32(a_ptr[k]); |
|
va[k] = _mm512_add_epi8(va[k], off); |
|
} |
|
vd1 = _mm512_set1_ps(GGML_FP16_TO_FP32(A[0 * KB + i].d)); |
|
} |
|
|
|
|
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
for (int k = 0; k < 8; ++k) { |
|
vb[k] = _mm512_loadu_si512((const __m512i *)(b_ptr + k * 64)); |
|
} |
|
const int offset = TILE_N * TILE_K; |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset))); |
|
const int offset2 = TILE_N * TILE_K + TILE_N * sizeof(ggml_half); |
|
const __m512i vcomp = _mm512_loadu_si512((const __m512i *)(b_ptr + offset2)); |
|
|
|
__m512i vsum = _mm512_setzero_si512(); |
|
for (int k = 0; k < 8; ++k) { |
|
vsum = _mm512_dpbusd_epi32(vsum, va[k], vb[k]); |
|
} |
|
vsum = _mm512_sub_epi32(vsum, vcomp); |
|
|
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(vsum), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_K, block_q4_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q4_K) + TILE_N * 4; |
|
|
|
const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
|
|
__m512i va[8]; |
|
|
|
__m512i va_bsum; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
const int offset_scales = (QK_K / 2) * TILE_N; |
|
const int offset_mins = (QK_K / 2) * TILE_N + 8 * TILE_N; |
|
const int offset_d0 = (QK_K / 2) * TILE_N + 16 * TILE_N; |
|
const int offset_dmin = (QK_K / 2) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); |
|
|
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto compute = [&](auto col, auto i) { |
|
|
|
if constexpr (col == 0) { |
|
for (int k_group = 0; k_group < QK_K / 32; ++k_group) { |
|
va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); |
|
} |
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); |
|
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
|
va_bsum = _mm512_castsi128_si512(q8s); |
|
vd1 = _mm512_set1_ps(A[0 * KB + i].d); |
|
} |
|
|
|
|
|
__m512i acc = _mm512_setzero_si512(); |
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
const char * b_qs = b_ptr; |
|
for (int k_group = 0; k_group < QK_K / 32; ++k_group) { |
|
__m512i vsum = _mm512_setzero_si512(); |
|
for (int k = 0; k < 8; k += 2) { |
|
__m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); |
|
__m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); |
|
|
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); |
|
__m512i vb0 = _mm512_and_si512(bytes, lowMask); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); |
|
__m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); |
|
|
|
b_qs += 64; |
|
} |
|
|
|
const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); |
|
acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); |
|
} |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); |
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
|
|
|
|
__m512i acc_m = _mm512_setzero_si512(); |
|
for (int k = 0; k < 4; ++k) { |
|
__m512i vmask = _mm512_set1_epi32(k); |
|
__m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); |
|
__m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); |
|
acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); |
|
} |
|
const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); |
|
vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_K, block_q5_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q5_K) + TILE_N * 4; |
|
|
|
const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
|
|
__m512i va[8]; |
|
|
|
__m512i va_bsum; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
const int offset_qh = (QK_K / 2) * TILE_N; |
|
const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N; |
|
const int offset_mins = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 8 * TILE_N; |
|
const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N; |
|
const int offset_dmin = (QK_K / 2) * TILE_N + (QK_K / 8) * TILE_N + 16 * TILE_N + TILE_N * sizeof(ggml_half); |
|
|
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
|
|
auto compute = [&](auto col, auto i) { |
|
|
|
if constexpr (col == 0) { |
|
for (int k_group = 0; k_group < QK_K / 32; ++k_group) { |
|
va[k_group] = _mm512_castsi256_si512(_mm256_loadu_si256((const __m256i *)(A[0 * KB + i].qs + k_group * 32))); |
|
} |
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); |
|
const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); |
|
va_bsum = _mm512_castsi128_si512(q8s); |
|
vd1 = _mm512_set1_ps(A[0 * KB + i].d); |
|
} |
|
|
|
|
|
__m512i acc = _mm512_setzero_si512(); |
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
const char * b_qs = b_ptr; |
|
const char * b_qh = b_ptr + offset_qh; |
|
for (int k_group = 0; k_group < QK_K / 32; ++k_group) { |
|
__m512i vsum = _mm512_setzero_si512(); |
|
__m512i hmask0 = _mm512_set1_epi8(0x1); |
|
__m512i hmask1 = _mm512_set1_epi8(0x2); |
|
__m512i hbits = _mm512_loadu_si512((const __m512i *)(b_qh + k_group * 64)); |
|
for (int k = 0; k < 8; k += 2) { |
|
__m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 0), va[k_group]); |
|
__m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(k + 1), va[k_group]); |
|
|
|
__m512i bytes = _mm512_loadu_si512((const __m512i *)b_qs); |
|
__m512i vb0 = _mm512_and_si512(bytes, lowMask); |
|
__m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
|
|
__m512i vh0 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask0), k), 4); |
|
__m512i vh1 = _mm512_slli_epi16(_mm512_srli_epi16(_mm512_and_si512(hbits, hmask1), k + 1), 4); |
|
|
|
hmask0 = _mm512_slli_epi16(hmask0, 2); |
|
hmask1 = _mm512_slli_epi16(hmask1, 2); |
|
vb0 = _mm512_add_epi8(vb0, vh0); |
|
vb1 = _mm512_add_epi8(vb1, vh1); |
|
|
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); |
|
|
|
b_qs += 64; |
|
} |
|
|
|
const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); |
|
acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); |
|
} |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); |
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
|
|
|
|
__m512i acc_m = _mm512_setzero_si512(); |
|
for (int k = 0; k < 4; ++k) { |
|
__m512i vmask = _mm512_set1_epi32(k); |
|
__m512i va = _mm512_permutexvar_epi32(vmask, va_bsum); |
|
__m512i vb = _mm512_cvtepi8_epi16(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_mins + k * 32))); |
|
acc_m = _mm512_dpwssds_epi32(acc_m, va, vb); |
|
} |
|
const __m512 vdmin = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_dmin))); |
|
vc[col] = _mm512_fnmadd_ps(_mm512_cvtepi32_ps(acc_m), _mm512_mul_ps(vdmin, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_K, block_q6_K, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_q6_K); |
|
|
|
const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
|
|
__m512i va[4]; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
const int offset_qh = (QK_K / 2) * TILE_N; |
|
const int offset_scales = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N; |
|
const int offset_d0 = (QK_K / 2) * TILE_N + (QK_K / 4) * TILE_N + 16 * TILE_N; |
|
|
|
|
|
__m512i vcomp; |
|
|
|
const __m512i m32s = _mm512_set1_epi32(32); |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
auto compute = [&](auto col, auto i) { |
|
if constexpr (col == 0) { |
|
|
|
va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); |
|
va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); |
|
va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); |
|
va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); |
|
|
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); |
|
vcomp = _mm512_mullo_epi32(_mm512_cvtepi16_epi32(q8sums), m32s); |
|
vd1 = _mm512_set1_ps(A[0 * KB + i].d); |
|
} |
|
|
|
|
|
__m512i acc = _mm512_setzero_si512(); |
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
const char * b_qs = b_ptr; |
|
const char * b_qh = b_ptr + offset_qh; |
|
int mask = 0; |
|
for (int k_group = 0; k_group < QK_K / 16; ++k_group) { |
|
int r = k_group >> 2; |
|
__m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
__m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
|
|
__m512i vsum = _mm512_setzero_si512(); |
|
__m512i hmask = _mm512_set1_epi8(0x3); |
|
|
|
__m512i bytes = _mm512_loadu_si512(b_qs); |
|
__m512i hbits = _mm512_loadu_si512(b_qh); |
|
__m512i vb0 = _mm512_and_si512(bytes, lowMask); |
|
__m512i vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
__m512i vh0 = _mm512_slli_epi16(_mm512_and_si512(hbits, hmask), 4); |
|
__m512i vh1 = _mm512_slli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 2)), 2); |
|
|
|
vb0 = _mm512_add_epi8(vb0, vh0); |
|
vb1 = _mm512_add_epi8(vb1, vh1); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); |
|
b_qs += 64; |
|
|
|
va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
|
|
bytes = _mm512_loadu_si512(b_qs); |
|
vb0 = _mm512_and_si512(bytes, lowMask); |
|
vb1 = _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask); |
|
vh0 = _mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 4)); |
|
vh1 = _mm512_srli_epi16(_mm512_and_si512(hbits, _mm512_slli_epi16(hmask, 6)), 2); |
|
vb0 = _mm512_add_epi8(vb0, vh0); |
|
vb1 = _mm512_add_epi8(vb1, vh1); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); |
|
b_qs += 64; |
|
b_qh += 64; |
|
|
|
|
|
__m512i vmask = _mm512_set1_epi32(k_group); |
|
vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); |
|
|
|
|
|
const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); |
|
acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); |
|
} |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); |
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](int col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
template <int BLOCK_M, int BLOCK_N, int BLOCK_K> |
|
struct tinygemm_kernel_vnni<block_q8_K, block_iq4_xs, float, BLOCK_M, BLOCK_N, BLOCK_K> { |
|
static void apply(int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
|
|
constexpr int COLS = BLOCK_N / 16; |
|
const int TILE_SIZE = TILE_N * sizeof(block_iq4_xs) + TILE_N * 2; |
|
|
|
const block_q8_K * RESTRICT A = static_cast<const block_q8_K *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
|
|
__m512i va[4]; |
|
__m512 vc[COLS]; |
|
__m512 vd1; |
|
|
|
|
|
const int offset_scales = (QK_K / 2) * TILE_N ; |
|
const int offset_d0 = (QK_K / 2) * TILE_N + 8 * TILE_N; |
|
|
|
|
|
__m512i vcomp; |
|
|
|
const __m256i m128s = _mm256_set1_epi16(128); |
|
const __m512i lowMask = _mm512_set1_epi8(0xF); |
|
|
|
const __m512i values128 = _mm512_set_epi8( |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127, |
|
113, 89, 69, 53, 38, 25, 13, 1, -10, -22, -35, -49, -65, -83, -104, -127 |
|
); |
|
const __m512i off = _mm512_set1_epi8(static_cast<char>(0x80)); |
|
const __m512i values256 = _mm512_add_epi8(values128, off); |
|
|
|
auto loadc = [&](auto col) { |
|
vc[col] = _mm512_setzero_ps(); |
|
}; |
|
Unroll<COLS>{}(loadc); |
|
|
|
auto compute = [&](auto col, auto i) { |
|
if constexpr (col == 0) { |
|
|
|
va[0] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 0)); |
|
va[1] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 64)); |
|
va[2] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 128)); |
|
va[3] = _mm512_loadu_si512((const __m512i *)(A[0 * KB + i].qs + 192)); |
|
|
|
|
|
const __m256i q8sums = _mm256_loadu_si256((const __m256i *)A[0 * KB + i].bsums); |
|
vcomp = _mm512_castsi256_si512(_mm256_madd_epi16(q8sums, m128s)); |
|
vd1 = _mm512_set1_ps(A[0 * KB + i].d); |
|
} |
|
|
|
|
|
__m512i acc = _mm512_setzero_si512(); |
|
const char * b_ptr = B + PACKED_INDEX(col, i, KB, TILE_SIZE); |
|
const char * b_qs = b_ptr; |
|
int mask = 0; |
|
for (int k_group = 0; k_group < QK_K / 32; ++k_group) { |
|
int r = k_group >> 1; |
|
__m512i vmask = _mm512_set1_epi32(k_group); |
|
__m512i vsum = _mm512_setzero_si512(); |
|
for (int k = 0; k < 8; k += 2) { |
|
__m512i va0 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
__m512i va1 = _mm512_permutexvar_epi32(_mm512_set1_epi32(mask++), va[r]); |
|
|
|
__m512i bytes = _mm512_loadu_si512(b_qs); |
|
__m512i vb0 = _mm512_shuffle_epi8(values256, _mm512_and_si512(bytes, lowMask)); |
|
__m512i vb1 = _mm512_shuffle_epi8(values256, _mm512_and_si512(_mm512_srli_epi16(bytes, 4), lowMask)); |
|
|
|
vsum = _mm512_dpbusd_epi32(vsum, vb0, va0); |
|
vsum = _mm512_dpbusd_epi32(vsum, vb1, va1); |
|
b_qs += 64; |
|
} |
|
|
|
vsum = _mm512_sub_epi32(vsum, _mm512_permutexvar_epi32(vmask, vcomp)); |
|
|
|
|
|
const __m512i vscale = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i *)(b_ptr + offset_scales + k_group * TILE_N))); |
|
acc = _mm512_add_epi32(acc, _mm512_mullo_epi32(vsum, vscale)); |
|
} |
|
const __m512 vd0 = _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(b_ptr + offset_d0))); |
|
vc[col] = _mm512_fmadd_ps(_mm512_cvtepi32_ps(acc), _mm512_mul_ps(vd0, vd1), vc[col]); |
|
}; |
|
|
|
for (int i = 0; i < KB; ++i) { |
|
Unroll<COLS>{}(compute, i); |
|
} |
|
|
|
|
|
auto storec = [&](auto col) { |
|
_mm512_storeu_ps((__m512i*)(C + 0 * ldc + col * 16), vc[col]); |
|
}; |
|
Unroll<COLS>{}(storec); |
|
} |
|
}; |
|
|
|
#define LAUNCH_TINYGEMM_KERNEL_VNNI(NB_SIZE) \ |
|
tinygemm_kernel_vnni<vec_dot_type, type, float, 1, NB_SIZE, blck_size>::apply( \ |
|
KB, (const char *)wdata + 0 * row_size_A, \ |
|
(const char *)src0->data + PACKED_INDEX(nb * kTilesN, 0, KB, TILE_SIZE), \ |
|
(float *) dst->data + 0 * N + nb_start, ldc) |
|
|
|
template <typename TA, typename TB, typename TC, int BLOCK_K, |
|
typename std::enable_if<!is_type_qkk<TB>::value, int>::type = 0> |
|
void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, TC * RESTRICT C, int ldc) { |
|
using packed_B_t = packed_B_type<TB>; |
|
const int TILE_SIZE = get_tile_size<TB>(); |
|
const bool need_unpack = do_unpack<TB>::value; |
|
|
|
GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); |
|
const TA * RESTRICT A = static_cast<const TA *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
const int m0 = std::min(M, TILE_M); |
|
const int m1 = std::max(M - TILE_M, 0); |
|
const int lda = KB * sizeof(TA); |
|
|
|
|
|
static thread_local packed_B_t Tile0[TILE_N * TILE_K]; |
|
static thread_local packed_B_t Tile1[TILE_N * TILE_K]; |
|
static thread_local int8_t Tile23[TILE_M * TILE_K]; |
|
|
|
static thread_local int32_t TileC0[TILE_M * TILE_N * 4]; |
|
static thread_local int32_t TileC1[TILE_M * TILE_N * 4]; |
|
|
|
|
|
int32_t * C_cur = TileC0; |
|
int32_t * C_pre = TileC1; |
|
|
|
auto Tile4 = [&](int32_t * base) { return base; }; |
|
auto Tile5 = [&](int32_t * base) { return base + TILE_M * TILE_N; }; |
|
auto Tile6 = [&](int32_t * base) { return base + 2 * TILE_M * TILE_N; }; |
|
auto Tile7 = [&](int32_t * base) { return base + 3 * TILE_M * TILE_N; }; |
|
|
|
if (M == 2 * TILE_M) { |
|
|
|
const char * B_blk0 = B + PACKED_INDEX(0, 0, KB, TILE_SIZE); |
|
const char * B_blk1 = B + PACKED_INDEX(1, 0, KB, TILE_SIZE); |
|
if (need_unpack) { |
|
unpack_B<TB>(Tile0, B_blk0); |
|
_tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); |
|
} |
|
|
|
_tile_zero(TMM4); |
|
_tile_loadd(TMM2, A[0].qs, lda); |
|
_tile_dpbssd(TMM4, TMM2, TMM0); |
|
_tile_stored(TMM4, Tile4(C_pre), TILE_N * sizeof(int32_t)); |
|
|
|
_tile_zero(TMM5); |
|
_tile_loadd(TMM3, A[TILE_M * KB + 0].qs, lda); |
|
_tile_dpbssd(TMM5, TMM3, TMM0); |
|
_tile_stored(TMM5, Tile5(C_pre), TILE_N * sizeof(int32_t)); |
|
|
|
if (need_unpack) { |
|
unpack_B<TB>(Tile1, B_blk0); |
|
_tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); |
|
} |
|
|
|
_tile_zero(TMM6); |
|
_tile_dpbssd(TMM6, TMM2, TMM1); |
|
_tile_stored(TMM6, Tile6(C_pre), TILE_N * sizeof(int32_t)); |
|
|
|
_tile_zero(TMM7); |
|
_tile_dpbssd(TMM7, TMM3, TMM1); |
|
_tile_stored(TMM7, Tile7(C_pre), TILE_N * sizeof(int32_t)); |
|
|
|
for (int i = 1; i < KB; ++i) { |
|
|
|
const int ii = i - 1; |
|
const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); |
|
const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); |
|
GGML_DISPATCH_BOOL(ii > 0, is_acc, [&] { |
|
if (need_unpack) { |
|
unpack_B<TB>(Tile0, B_blk0); |
|
_tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); |
|
} |
|
_tile_zero(TMM4); |
|
_tile_loadd(TMM2, A[i].qs, lda); |
|
acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); |
|
|
|
_tile_dpbssd(TMM4, TMM2, TMM0); |
|
_tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); |
|
|
|
_tile_zero(TMM5); |
|
_tile_loadd(TMM3, A[TILE_M * KB + i].qs, lda); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); |
|
|
|
_tile_dpbssd(TMM5, TMM3, TMM0); |
|
_tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); |
|
|
|
if (need_unpack) { |
|
unpack_B<TB>(Tile1, B_blk1); |
|
_tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); |
|
} |
|
_tile_zero(TMM6); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); |
|
|
|
_tile_dpbssd(TMM6, TMM2, TMM1); |
|
_tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); |
|
|
|
_tile_zero(TMM7); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); |
|
|
|
_tile_dpbssd(TMM7, TMM3, TMM1); |
|
_tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); |
|
|
|
std::swap(C_cur, C_pre); |
|
}); |
|
} |
|
|
|
{ |
|
int ii = KB - 1; |
|
acc_C<TA, TB, true>::apply(C, ldc, Tile4(C_pre), &A[ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); |
|
acc_C<TA, TB, true>::apply(C + TILE_M * ldc, ldc, Tile5(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(0, ii, KB, TILE_SIZE), TILE_M); |
|
acc_C<TA, TB, true>::apply(C + TILE_N, ldc, Tile6(C_pre), &A[ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); |
|
acc_C<TA, TB, true>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_pre), &A[TILE_M * KB + ii], KB, B + PACKED_INDEX(1, ii, KB, TILE_SIZE), TILE_M); |
|
} |
|
} else { |
|
for (int i = 0; i < KB; ++i) { |
|
_tile_zero(TMM4); |
|
_tile_zero(TMM6); |
|
if (m1 != 0) { |
|
_tile_zero(TMM5); |
|
_tile_zero(TMM7); |
|
} |
|
|
|
const char * B_blk0 = B + PACKED_INDEX(0, i, KB, TILE_SIZE); |
|
const char * B_blk1 = B + PACKED_INDEX(1, i, KB, TILE_SIZE); |
|
if (need_unpack) { |
|
unpack_B<TB>(Tile0, B_blk0); |
|
_tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM0, B_blk0, TILE_N * VNNI_BLK); |
|
} |
|
|
|
if (need_unpack) { |
|
unpack_B<TB>(Tile1, B_blk1); |
|
_tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); |
|
} else { |
|
_tile_loadd(TMM1, B_blk1, TILE_N * VNNI_BLK); |
|
} |
|
|
|
if (m0 == TILE_M) { |
|
_tile_loadd(TMM2, A[i].qs, lda); |
|
} else { |
|
unpack_A(Tile23, &A[i], KB, m0); |
|
_tile_loadd(TMM2, Tile23, TILE_K); |
|
} |
|
|
|
_tile_dpbssd(TMM4, TMM2, TMM0); |
|
_tile_dpbssd(TMM6, TMM2, TMM1); |
|
|
|
_tile_stored(TMM4, Tile4(C_cur), TILE_N * sizeof(int32_t)); |
|
_tile_stored(TMM6, Tile6(C_cur), TILE_N * sizeof(int32_t)); |
|
|
|
GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { |
|
acc_C<TA, TB, is_acc>::apply(C, ldc, Tile4(C_cur), &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Tile6(C_cur), &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); |
|
}); |
|
|
|
if (m1 != 0) { |
|
unpack_A(Tile23, &A[TILE_M * KB + i], KB, m1); |
|
_tile_loadd(TMM3, Tile23, TILE_K); |
|
|
|
_tile_dpbssd(TMM5, TMM3, TMM0); |
|
_tile_dpbssd(TMM7, TMM3, TMM1); |
|
_tile_stored(TMM5, Tile5(C_cur), TILE_N * sizeof(int32_t)); |
|
_tile_stored(TMM7, Tile7(C_cur), TILE_N * sizeof(int32_t)); |
|
GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Tile5(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Tile7(C_cur), &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); |
|
}); |
|
} |
|
} |
|
} |
|
return; |
|
} |
|
|
|
template <typename TA, typename TB, typename TC, int BLOCK_K, |
|
typename std::enable_if<is_type_qkk<TB>::value, int>::type = 0> |
|
void tinygemm_kernel_amx(int M, int N, int KB, const void * RESTRICT _A, const void * RESTRICT _B, float * RESTRICT C, int ldc) { |
|
static_assert(std::is_same<TA, block_q8_K>::value); |
|
const int TILE_SIZE = get_tile_size<TB>(); |
|
|
|
GGML_ASSERT(M <= 2 * TILE_M && N == 2 * TILE_N); |
|
const TA * RESTRICT A = static_cast<const TA *>(_A); |
|
const char * RESTRICT B = static_cast<const char *>(_B); |
|
|
|
const int m0 = std::min(M, TILE_M); |
|
const int m1 = std::max(M - TILE_M, 0); |
|
|
|
|
|
static thread_local int8_t Tile0[TILE_N * TILE_K]; |
|
static thread_local int8_t Tile1[TILE_N * TILE_K]; |
|
static thread_local int8_t Tile23[TILE_M * TILE_K]; |
|
|
|
|
|
static thread_local int32_t Tile4[TILE_M * TILE_N]; |
|
static thread_local int32_t Tile5[TILE_M * TILE_N]; |
|
static thread_local int32_t Tile6[TILE_M * TILE_N]; |
|
static thread_local int32_t Tile7[TILE_M * TILE_N]; |
|
|
|
|
|
static thread_local int32_t Sumi4[TILE_M * TILE_N]; |
|
static thread_local int32_t Sumi5[TILE_M * TILE_N]; |
|
static thread_local int32_t Sumi6[TILE_M * TILE_N]; |
|
static thread_local int32_t Sumi7[TILE_M * TILE_N]; |
|
|
|
const int k_group_size = std::is_same<TB, block_q6_K>::value ? 16 : 32; |
|
for (int i = 0; i < KB; ++i) { |
|
|
|
for (int k = 0; k < QK_K / k_group_size; ++k) { |
|
GGML_DISPATCH_BOOL(k > 0, is_acc, [&] { |
|
_tile_zero(TMM4); |
|
_tile_zero(TMM6); |
|
|
|
unpack_B<TB>(Tile0, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k); |
|
_tile_loadd(TMM0, Tile0, TILE_N * VNNI_BLK); |
|
|
|
unpack_B<TB>(Tile1, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k); |
|
_tile_loadd(TMM1, Tile1, TILE_N * VNNI_BLK); |
|
|
|
unpack_A<TB>(Tile23, &A[i], KB, k, m0); |
|
_tile_loadd(TMM2, Tile23, TILE_K); |
|
|
|
_tile_dpbssd(TMM4, TMM2, TMM0); |
|
_tile_dpbssd(TMM6, TMM2, TMM1); |
|
|
|
_tile_stored(TMM4, Tile4, TILE_N * sizeof(int32_t)); |
|
_tile_stored(TMM6, Tile6, TILE_N * sizeof(int32_t)); |
|
|
|
scale_C<TB, is_acc>(Tile4, Sumi4, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m0); |
|
scale_C<TB, is_acc>(Tile6, Sumi6, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m0); |
|
|
|
if (m1 != 0) { |
|
_tile_zero(TMM5); |
|
_tile_zero(TMM7); |
|
|
|
unpack_A<TB>(Tile23, &A[TILE_M * KB + i], KB, k, m1); |
|
_tile_loadd(TMM3, Tile23, TILE_K); |
|
|
|
_tile_dpbssd(TMM5, TMM3, TMM0); |
|
_tile_dpbssd(TMM7, TMM3, TMM1); |
|
|
|
_tile_stored(TMM5, Tile5, TILE_N * sizeof(int32_t)); |
|
_tile_stored(TMM7, Tile7, TILE_N * sizeof(int32_t)); |
|
|
|
scale_C<TB, is_acc>(Tile5, Sumi5, B + PACKED_INDEX(0, i, KB, TILE_SIZE), k, m1); |
|
scale_C<TB, is_acc>(Tile7, Sumi7, B + PACKED_INDEX(1, i, KB, TILE_SIZE), k, m1); |
|
} |
|
}); |
|
} |
|
|
|
|
|
GGML_DISPATCH_BOOL(i > 0, is_acc, [&] { |
|
acc_C<TA, TB, is_acc>::apply(C, ldc, Sumi4, &A[i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m0); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_N, ldc, Sumi6, &A[i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m0); |
|
if (m1 != 0) { |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc, ldc, Sumi5, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(0, i, KB, TILE_SIZE), m1); |
|
acc_C<TA, TB, is_acc>::apply(C + TILE_M * ldc + TILE_N, ldc, Sumi7, &A[TILE_M * KB + i], KB, B + PACKED_INDEX(1, i, KB, TILE_SIZE), m1); |
|
} |
|
}); |
|
} |
|
return; |
|
} |
|
|
|
} |
|
|
|
|
|
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor) { |
|
const enum ggml_type TYPE = tensor->type; |
|
|
|
const int K = tensor->ne[0]; |
|
const int N = tensor->ne[1]; |
|
|
|
auto get_tensor_size = [&] { |
|
size_t row_size_B{0}; |
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
row_size_B = get_row_size<type, blck_size>(K); |
|
}); |
|
return N * row_size_B; |
|
}; |
|
|
|
if (qtype_has_amx_kernels(TYPE)) { |
|
return get_tensor_size(); |
|
} else { |
|
|
|
return ggml_nbytes(tensor); |
|
} |
|
} |
|
|
|
|
|
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { |
|
GGML_ASSERT(offset == 0 && size == ggml_nbytes(tensor)); |
|
|
|
const enum ggml_type TYPE = tensor->type; |
|
|
|
const int K = tensor->ne[0]; |
|
const int N = tensor->ne[1]; |
|
|
|
#if defined(_OPENMP) |
|
|
|
int n_threads = omp_get_num_threads(); |
|
#else |
|
int n_threads = 1; |
|
#endif |
|
|
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
convert_B_packed_format<type, blck_size>((void *)((char *)tensor->data + offset), (const type *)data, N, K, n_threads); |
|
}); |
|
} |
|
|
|
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst) { |
|
struct ggml_tensor * src0 = dst->src[0]; |
|
|
|
const enum ggml_type TYPE = src0->type; |
|
|
|
const bool is_floating_type = TYPE == GGML_TYPE_F16; |
|
if (is_floating_type) { |
|
return 0; |
|
} |
|
|
|
const int M = dst->ne[1]; |
|
const int K = src0->ne[0]; |
|
|
|
size_t desired_wsize = 0; |
|
|
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
const size_t row_size_A = K / blck_size * sizeof(vec_dot_type); |
|
desired_wsize = M * row_size_A; |
|
}); |
|
|
|
return desired_wsize; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void ggml_backend_amx_mul_mat(const ggml_compute_params * params, struct ggml_tensor * dst) { |
|
struct ggml_tensor * src0 = dst->src[0]; |
|
struct ggml_tensor * src1 = dst->src[1]; |
|
|
|
const enum ggml_type TYPE = src0->type; |
|
|
|
|
|
|
|
const bool is_floating_type = TYPE == GGML_TYPE_F16; |
|
|
|
const int M = dst->ne[1]; |
|
const int N = dst->ne[0]; |
|
const int K = src0->ne[0]; |
|
const int ldc = dst->nb[1] / dst->nb[0]; |
|
|
|
if (is_floating_type) { |
|
constexpr int BLOCK_M = 4; |
|
constexpr int BLOCK_N = 6; |
|
const int MB = div_up(M, BLOCK_M); |
|
const int NB = div_up(N, BLOCK_N); |
|
|
|
parallel_for_ggml(params, MB * NB, [&](int begin, int end) { |
|
GGML_DISPATCH_FLOATING_TYPES(TYPE, [&] { |
|
for (int i = begin; i < end; ++i) { |
|
int mb = i / NB; |
|
int nb = i % NB; |
|
|
|
int mb_start = mb * BLOCK_M; |
|
int mb_size = std::min(BLOCK_M, M - mb_start); |
|
int nb_start = nb * BLOCK_N; |
|
int nb_size = std::min(BLOCK_N, N - nb_start); |
|
|
|
switch (mb_size << 4 | nb_size) { |
|
case 0x12: LAUNCH_TINYGEMM_KERNEL_AVX(1, 2); break; |
|
case 0x14: LAUNCH_TINYGEMM_KERNEL_AVX(1, 4); break; |
|
case 0x16: LAUNCH_TINYGEMM_KERNEL_AVX(1, 6); break; |
|
case 0x22: LAUNCH_TINYGEMM_KERNEL_AVX(2, 2); break; |
|
case 0x24: LAUNCH_TINYGEMM_KERNEL_AVX(2, 4); break; |
|
case 0x26: LAUNCH_TINYGEMM_KERNEL_AVX(2, 6); break; |
|
case 0x32: LAUNCH_TINYGEMM_KERNEL_AVX(3, 2); break; |
|
case 0x34: LAUNCH_TINYGEMM_KERNEL_AVX(3, 4); break; |
|
case 0x36: LAUNCH_TINYGEMM_KERNEL_AVX(3, 6); break; |
|
case 0x42: LAUNCH_TINYGEMM_KERNEL_AVX(4, 2); break; |
|
case 0x44: LAUNCH_TINYGEMM_KERNEL_AVX(4, 4); break; |
|
case 0x46: LAUNCH_TINYGEMM_KERNEL_AVX(4, 6); break; |
|
default: fprintf(stderr, "Unexpected block size!\n"); |
|
} |
|
} |
|
}); |
|
}); |
|
return; |
|
} |
|
|
|
|
|
void * wdata = params->wdata; |
|
|
|
|
|
if (params->ith == 0) { |
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
const size_t row_size_A = K / blck_size * sizeof(vec_dot_type); |
|
const size_t desired_wsize = M * row_size_A; |
|
if (params->wsize < desired_wsize) { |
|
GGML_ABORT("insufficient work space size"); |
|
} |
|
|
|
|
|
|
|
GGML_ASSERT(TILE_K == blck_size || TILE_K * 8 == blck_size); |
|
|
|
const float * A_data = static_cast<const float *>(src1->data); |
|
for (int m = 0; m < M; ++m) { |
|
from_float<vec_dot_type>(A_data + m * K, (char *)wdata + m * row_size_A, K); |
|
} |
|
}); |
|
} |
|
|
|
ggml_barrier(params->threadpool); |
|
|
|
if (M == 1) { |
|
|
|
constexpr int kTilesN = 4; |
|
constexpr int BLOCK_N = TILE_N * kTilesN; |
|
const int NB = div_up(N, BLOCK_N); |
|
|
|
parallel_for_ggml(params, NB, [&](int begin, int end) { |
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
const int KB = K / blck_size; |
|
const int TILE_SIZE = get_tile_size<type>(); |
|
const int row_size_A = KB * sizeof(vec_dot_type); |
|
for (int i = begin; i < end; ++i) { |
|
int nb = i; |
|
int nb_start = nb * BLOCK_N; |
|
int nb_size = std::min(BLOCK_N, N - nb_start); |
|
|
|
switch (nb_size) { |
|
|
|
case 128: LAUNCH_TINYGEMM_KERNEL_VNNI(128); break; |
|
case 96: LAUNCH_TINYGEMM_KERNEL_VNNI(96); break; |
|
case 64: LAUNCH_TINYGEMM_KERNEL_VNNI(64); break; |
|
case 32: LAUNCH_TINYGEMM_KERNEL_VNNI(32); break; |
|
default: fprintf(stderr, "Unexpected n block size!\n"); |
|
} |
|
} |
|
}); |
|
}); |
|
return; |
|
} |
|
|
|
|
|
constexpr int BLOCK_M = TILE_M * 2; |
|
constexpr int BLOCK_N = TILE_N * 2; |
|
const int MB = div_up(M, BLOCK_M); |
|
const int NB = div_up(N, BLOCK_N); |
|
|
|
parallel_for_ggml(params, MB * NB, [&](int begin, int end) { |
|
|
|
ggml_tile_config_init(); |
|
|
|
GGML_DISPATCH_QTYPES(TYPE, [&] { |
|
const int KB = K / blck_size; |
|
const int TILE_SIZE = get_tile_size<type>(); |
|
const int row_size_A = KB * sizeof(vec_dot_type); |
|
|
|
for (int i = begin; i < end; ++i) { |
|
int mb = i / NB; |
|
int nb = i % NB; |
|
|
|
int mb_start = mb * BLOCK_M; |
|
int mb_size = std::min(BLOCK_M, M - mb_start); |
|
int nb_start = nb * BLOCK_N; |
|
int nb_size = BLOCK_N; |
|
|
|
tinygemm_kernel_amx<vec_dot_type, type, float, blck_size>( |
|
mb_size, nb_size, KB, |
|
(const char *)wdata + mb_start * row_size_A, |
|
(const char *)src0->data + PACKED_INDEX(nb * 2, 0, KB, TILE_SIZE), |
|
(float *) dst->data + mb_start * N + nb_start, ldc); |
|
} |
|
}); |
|
}); |
|
} |
|
|
|
#endif |
|
|