|
#include "ggml-alloc.h" |
|
#include "ggml-backend-impl.h" |
|
#include "ggml.h" |
|
#include "ggml-impl.h" |
|
#include <assert.h> |
|
#include <limits.h> |
|
#include <stdarg.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b)) |
|
#define MAX_FREE_BLOCKS 256 |
|
|
|
|
|
|
|
|
|
#define AT_PRINTF(...) |
|
|
|
|
|
static bool ggml_is_view(const struct ggml_tensor * t) { |
|
return t->view_src != NULL; |
|
} |
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { |
|
if (a->type != b->type) { |
|
return false; |
|
} |
|
for (int i = 0; i < GGML_MAX_DIMS; i++) { |
|
if (a->ne[i] != b->ne[i]) { |
|
return false; |
|
} |
|
if (a->nb[i] != b->nb[i]) { |
|
return false; |
|
} |
|
} |
|
return true; |
|
} |
|
|
|
static bool ggml_op_can_inplace(enum ggml_op op) { |
|
switch (op) { |
|
case GGML_OP_SCALE: |
|
case GGML_OP_DIAG_MASK_ZERO: |
|
case GGML_OP_DIAG_MASK_INF: |
|
case GGML_OP_ADD: |
|
case GGML_OP_ADD1: |
|
case GGML_OP_SUB: |
|
case GGML_OP_MUL: |
|
case GGML_OP_DIV: |
|
case GGML_OP_SQR: |
|
case GGML_OP_SQRT: |
|
case GGML_OP_LOG: |
|
case GGML_OP_UNARY: |
|
case GGML_OP_ROPE: |
|
case GGML_OP_RMS_NORM: |
|
case GGML_OP_SOFT_MAX: |
|
return true; |
|
|
|
default: |
|
return false; |
|
} |
|
} |
|
|
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { |
|
assert(alignment && !(alignment & (alignment - 1))); |
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; |
|
return offset + align; |
|
} |
|
|
|
|
|
|
|
struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) { |
|
void * base = ggml_backend_buffer_get_base(buffer); |
|
size_t align = ggml_backend_buffer_get_alignment(buffer); |
|
|
|
assert(align && !(align & (align - 1))); |
|
|
|
struct ggml_tallocr talloc = (struct ggml_tallocr) { |
|
buffer, |
|
base, |
|
align, |
|
aligned_offset(base, 0, align), |
|
}; |
|
return talloc; |
|
} |
|
|
|
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) { |
|
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); |
|
size = GGML_PAD(size, talloc->alignment); |
|
|
|
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { |
|
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", |
|
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); |
|
GGML_ABORT("not enough space in the buffer"); |
|
} |
|
|
|
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; |
|
talloc->offset += size; |
|
|
|
assert(((uintptr_t)addr % talloc->alignment) == 0); |
|
|
|
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); |
|
} |
|
|
|
|
|
|
|
struct free_block { |
|
size_t offset; |
|
size_t size; |
|
}; |
|
|
|
struct ggml_dyn_tallocr { |
|
size_t alignment; |
|
int n_free_blocks; |
|
struct free_block free_blocks[MAX_FREE_BLOCKS]; |
|
size_t max_size; |
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
struct { |
|
const struct ggml_tensor * tensor; |
|
size_t offset; |
|
} allocated_tensors[1024]; |
|
#endif |
|
}; |
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { |
|
for (int i = 0; i < 1024; i++) { |
|
if (alloc->allocated_tensors[i].tensor == NULL) { |
|
alloc->allocated_tensors[i].tensor = tensor; |
|
alloc->allocated_tensors[i].offset = offset; |
|
return; |
|
} |
|
} |
|
GGML_ABORT("out of allocated_tensors"); |
|
} |
|
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { |
|
for (int i = 0; i < 1024; i++) { |
|
if (alloc->allocated_tensors[i].offset == offset) { |
|
alloc->allocated_tensors[i].tensor = NULL; |
|
return; |
|
} |
|
} |
|
GGML_ABORT("tried to free tensor %s not found\n", tensor->name); |
|
} |
|
#endif |
|
|
|
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { |
|
size = aligned_offset(NULL, size, alloc->alignment); |
|
|
|
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); |
|
|
|
size_t max_avail = 0; |
|
|
|
|
|
int best_fit_block = -1; |
|
size_t best_fit_size = SIZE_MAX; |
|
for (int i = 0; i < alloc->n_free_blocks - 1; i++) { |
|
struct free_block * block = &alloc->free_blocks[i]; |
|
max_avail = MAX(max_avail, block->size); |
|
if (block->size >= size && block->size <= best_fit_size) { |
|
best_fit_block = i; |
|
best_fit_size = block->size; |
|
} |
|
} |
|
|
|
if (best_fit_block == -1) { |
|
|
|
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; |
|
max_avail = MAX(max_avail, block->size); |
|
if (block->size >= size) { |
|
best_fit_block = alloc->n_free_blocks - 1; |
|
} else { |
|
|
|
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", |
|
__func__, size, max_avail); |
|
GGML_ABORT("not enough space in the buffer"); |
|
} |
|
} |
|
|
|
struct free_block * block = &alloc->free_blocks[best_fit_block]; |
|
size_t offset = block->offset; |
|
block->offset = offset + size; |
|
block->size -= size; |
|
if (block->size == 0) { |
|
|
|
alloc->n_free_blocks--; |
|
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { |
|
alloc->free_blocks[j] = alloc->free_blocks[j+1]; |
|
} |
|
} |
|
|
|
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); |
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
add_allocated_tensor(alloc, offset, tensor); |
|
size_t cur_max = offset + size; |
|
if (cur_max > alloc->max_size) { |
|
|
|
for (int i = 0; i < 1024; i++) { |
|
for (int j = i + 1; j < 1024; j++) { |
|
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { |
|
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; |
|
size_t tmp_offset = alloc->allocated_tensors[i].offset; |
|
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; |
|
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; |
|
alloc->allocated_tensors[j].tensor = tmp_tensor; |
|
alloc->allocated_tensors[j].offset = tmp_offset; |
|
} |
|
} |
|
} |
|
GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); |
|
for (int i = 0; i < 1024; i++) { |
|
if (alloc->allocated_tensors[i].tensor) { |
|
GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, |
|
alloc->allocated_tensors[i].offset, |
|
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), |
|
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); |
|
} |
|
} |
|
GGML_LOG_DEBUG("\n"); |
|
} |
|
#endif |
|
|
|
alloc->max_size = MAX(alloc->max_size, offset + size); |
|
|
|
return offset; |
|
|
|
GGML_UNUSED(tensor); |
|
} |
|
|
|
|
|
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { |
|
size = aligned_offset(NULL, size, alloc->alignment); |
|
|
|
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); |
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
remove_allocated_tensor(alloc, offset, tensor); |
|
#endif |
|
|
|
|
|
for (int i = 0; i < alloc->n_free_blocks; i++) { |
|
struct free_block * block = &alloc->free_blocks[i]; |
|
|
|
if (block->offset + block->size == offset) { |
|
block->size += size; |
|
|
|
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { |
|
block->size += alloc->free_blocks[i+1].size; |
|
alloc->n_free_blocks--; |
|
for (int j = i+1; j < alloc->n_free_blocks; j++) { |
|
alloc->free_blocks[j] = alloc->free_blocks[j+1]; |
|
} |
|
} |
|
return; |
|
} |
|
|
|
if (offset + size == block->offset) { |
|
block->offset = offset; |
|
block->size += size; |
|
|
|
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { |
|
alloc->free_blocks[i-1].size += block->size; |
|
alloc->n_free_blocks--; |
|
for (int j = i; j < alloc->n_free_blocks; j++) { |
|
alloc->free_blocks[j] = alloc->free_blocks[j+1]; |
|
} |
|
} |
|
return; |
|
} |
|
} |
|
|
|
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); |
|
|
|
int insert_pos = 0; |
|
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { |
|
insert_pos++; |
|
} |
|
|
|
for (int i = alloc->n_free_blocks; i > insert_pos; i--) { |
|
alloc->free_blocks[i] = alloc->free_blocks[i-1]; |
|
} |
|
|
|
alloc->free_blocks[insert_pos].offset = offset; |
|
alloc->free_blocks[insert_pos].size = size; |
|
alloc->n_free_blocks++; |
|
|
|
GGML_UNUSED(tensor); |
|
} |
|
|
|
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { |
|
alloc->n_free_blocks = 1; |
|
alloc->free_blocks[0].offset = 0; |
|
alloc->free_blocks[0].size = SIZE_MAX/2; |
|
alloc->max_size = 0; |
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
for (int i = 0; i < 1024; i++) { |
|
alloc->allocated_tensors[i].tensor = NULL; |
|
} |
|
#endif |
|
} |
|
|
|
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { |
|
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); |
|
|
|
*alloc = (struct ggml_dyn_tallocr) { |
|
alignment, |
|
0, |
|
{{0}}, |
|
0, |
|
#ifdef GGML_ALLOCATOR_DEBUG |
|
{{0}}, |
|
#endif |
|
}; |
|
|
|
ggml_dyn_tallocr_reset(alloc); |
|
|
|
return alloc; |
|
} |
|
|
|
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { |
|
free(alloc); |
|
} |
|
|
|
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { |
|
return alloc->max_size; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
struct hash_node { |
|
int n_children; |
|
int n_views; |
|
int buffer_id; |
|
size_t offset; |
|
bool allocated; |
|
}; |
|
|
|
struct tensor_alloc { |
|
int buffer_id; |
|
size_t offset; |
|
size_t size_max; |
|
}; |
|
|
|
struct leaf_alloc { |
|
struct tensor_alloc leaf; |
|
}; |
|
|
|
struct node_alloc { |
|
struct tensor_alloc dst; |
|
struct tensor_alloc src[GGML_MAX_SRC]; |
|
}; |
|
|
|
struct ggml_gallocr { |
|
ggml_backend_buffer_type_t * bufts; |
|
ggml_backend_buffer_t * buffers; |
|
struct ggml_dyn_tallocr ** buf_tallocs; |
|
int n_buffers; |
|
|
|
struct ggml_hash_set hash_set; |
|
struct hash_node * hash_values; |
|
|
|
struct node_alloc * node_allocs; |
|
int n_nodes; |
|
|
|
struct leaf_alloc * leaf_allocs; |
|
int n_leafs; |
|
}; |
|
|
|
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { |
|
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr)); |
|
GGML_ASSERT(galloc != NULL); |
|
|
|
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t)); |
|
GGML_ASSERT(galloc->bufts != NULL); |
|
|
|
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t)); |
|
GGML_ASSERT(galloc->buffers != NULL); |
|
|
|
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *)); |
|
GGML_ASSERT(galloc->buf_tallocs != NULL); |
|
|
|
for (int i = 0; i < n_bufs; i++) { |
|
galloc->bufts[i] = bufts[i]; |
|
galloc->buffers[i] = NULL; |
|
|
|
|
|
for (int j = 0; j < i; j++) { |
|
if (bufts[i] == bufts[j]) { |
|
galloc->buf_tallocs[i] = galloc->buf_tallocs[j]; |
|
break; |
|
} |
|
} |
|
|
|
if (galloc->buf_tallocs[i] == NULL) { |
|
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); |
|
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); |
|
} |
|
} |
|
galloc->n_buffers = n_bufs; |
|
|
|
return galloc; |
|
} |
|
|
|
ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { |
|
return ggml_gallocr_new_n(&buft, 1); |
|
} |
|
|
|
void ggml_gallocr_free(ggml_gallocr_t galloc) { |
|
if (galloc == NULL) { |
|
return; |
|
} |
|
|
|
for (int i = 0; i < galloc->n_buffers; i++) { |
|
if (galloc->buffers != NULL) { |
|
|
|
bool freed = false; |
|
for (int j = 0; j < i; j++) { |
|
if (galloc->buffers[j] == galloc->buffers[i]) { |
|
freed = true; |
|
break; |
|
} |
|
} |
|
if (!freed) { |
|
ggml_backend_buffer_free(galloc->buffers[i]); |
|
} |
|
} |
|
if (galloc->buf_tallocs != NULL) { |
|
|
|
bool freed = false; |
|
for (int j = 0; j < i; j++) { |
|
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) { |
|
freed = true; |
|
break; |
|
} |
|
} |
|
if (!freed) { |
|
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); |
|
} |
|
} |
|
} |
|
|
|
ggml_hash_set_free(&galloc->hash_set); |
|
free(galloc->hash_values); |
|
free(galloc->bufts); |
|
free(galloc->buffers); |
|
free(galloc->buf_tallocs); |
|
free(galloc->node_allocs); |
|
free(galloc->leaf_allocs); |
|
free(galloc); |
|
} |
|
|
|
typedef struct ggml_gallocr * ggml_gallocr_t; |
|
|
|
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { |
|
size_t i = ggml_hash_find_or_insert(&galloc->hash_set, t); |
|
return &galloc->hash_values[i]; |
|
} |
|
|
|
static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { |
|
return ggml_gallocr_hash_get(galloc, t)->allocated; |
|
} |
|
|
|
static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { |
|
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; |
|
} |
|
|
|
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { |
|
GGML_ASSERT(buffer_id >= 0); |
|
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); |
|
|
|
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { |
|
hn->allocated = true; |
|
assert(hn->offset == 0); |
|
|
|
|
|
if (ggml_op_can_inplace(node->op)) { |
|
for (int i = 0; i < GGML_MAX_SRC; i++) { |
|
struct ggml_tensor * parent = node->src[i]; |
|
if (parent == NULL) { |
|
continue; |
|
} |
|
|
|
|
|
if (!ggml_gallocr_is_own(galloc, parent)) { |
|
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); |
|
continue; |
|
} |
|
|
|
|
|
if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { |
|
AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); |
|
continue; |
|
} |
|
|
|
if (!ggml_are_same_layout(node, parent)) { |
|
AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); |
|
continue; |
|
} |
|
|
|
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); |
|
if (p_hn->n_children == 1 && p_hn->n_views == 0) { |
|
if (ggml_is_view(parent)) { |
|
struct ggml_tensor * view_src = parent->view_src; |
|
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); |
|
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { |
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); |
|
assert(view_src_hn->offset == p_hn->offset); |
|
hn->buffer_id = p_hn->buffer_id; |
|
hn->offset = p_hn->offset; |
|
p_hn->allocated = false; |
|
view_src_hn->allocated = false; |
|
return; |
|
} |
|
} else { |
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); |
|
hn->buffer_id = p_hn->buffer_id; |
|
hn->offset = p_hn->offset; |
|
p_hn->allocated = false; |
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; |
|
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; |
|
size_t size = ggml_backend_buft_get_alloc_size(buft, node); |
|
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); |
|
hn->buffer_id = buffer_id; |
|
hn->offset = offset; |
|
return; |
|
} |
|
} |
|
|
|
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) { |
|
|
|
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { |
|
AT_PRINTF("not freeing output %s\n", node->name); |
|
return; |
|
} |
|
|
|
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); |
|
size_t offset = hn->offset; |
|
int buffer_id = hn->buffer_id; |
|
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; |
|
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; |
|
size_t size = ggml_backend_buft_get_alloc_size(buft, node); |
|
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); |
|
hn->allocated = false; |
|
} |
|
|
|
static int get_node_buffer_id(const int * node_buffer_ids, int i) { |
|
return node_buffer_ids ? node_buffer_ids[i] : 0; |
|
} |
|
|
|
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { |
|
|
|
ggml_hash_set_reset(&galloc->hash_set); |
|
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); |
|
|
|
|
|
|
|
for (int i = 0; i < graph->n_leafs; i++) { |
|
struct ggml_tensor * leaf = graph->leafs[i]; |
|
ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i)); |
|
} |
|
|
|
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) { |
|
struct ggml_tensor * node = graph->nodes[i]; |
|
|
|
|
|
|
|
|
|
|
|
if (ggml_is_view(node) && node->op != GGML_OP_NONE) { |
|
struct ggml_tensor * view_src = node->view_src; |
|
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; |
|
} |
|
|
|
if (node->flags & GGML_TENSOR_FLAG_INPUT) { |
|
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); |
|
} |
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * src = node->src[j]; |
|
if (src == NULL) { |
|
continue; |
|
} |
|
|
|
ggml_gallocr_hash_get(galloc, src)->n_children += 1; |
|
|
|
|
|
if (src->flags & GGML_TENSOR_FLAG_INPUT) { |
|
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); |
|
} |
|
} |
|
} |
|
|
|
|
|
for (int i = 0; i < graph->n_nodes; i++) { |
|
struct ggml_tensor * node = graph->nodes[i]; |
|
int buffer_id = get_node_buffer_id(node_buffer_ids, i); |
|
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * parent = node->src[j]; |
|
if (parent == NULL) { |
|
continue; |
|
} |
|
ggml_gallocr_allocate_node(galloc, parent, buffer_id); |
|
} |
|
|
|
|
|
ggml_gallocr_allocate_node(galloc, node, buffer_id); |
|
|
|
AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); |
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * parent = node->src[j]; |
|
if (parent == NULL) { |
|
continue; |
|
} |
|
AT_PRINTF("%s", parent->name); |
|
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { |
|
AT_PRINTF(", "); |
|
} |
|
} |
|
AT_PRINTF("\n"); |
|
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * parent = node->src[j]; |
|
if (parent == NULL) { |
|
continue; |
|
} |
|
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); |
|
p_hn->n_children -= 1; |
|
|
|
AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", |
|
parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); |
|
|
|
if (p_hn->n_children == 0 && p_hn->n_views == 0) { |
|
if (ggml_is_view(parent)) { |
|
struct ggml_tensor * view_src = parent->view_src; |
|
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); |
|
view_src_hn->n_views -= 1; |
|
AT_PRINTF("view_src %s: %d children, %d views\n", |
|
view_src->name, view_src_hn->n_children, view_src_hn->n_views); |
|
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { |
|
ggml_gallocr_free_node(galloc, view_src); |
|
} |
|
} |
|
else if (p_hn->allocated) { |
|
ggml_gallocr_free_node(galloc, parent); |
|
} |
|
} |
|
AT_PRINTF("\n"); |
|
} |
|
} |
|
} |
|
|
|
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { |
|
size_t min_hash_size = graph->n_nodes + graph->n_leafs; |
|
|
|
min_hash_size += min_hash_size / 4; |
|
|
|
|
|
if (galloc->hash_set.size < min_hash_size) { |
|
ggml_hash_set_free(&galloc->hash_set); |
|
galloc->hash_set = ggml_hash_set_new(min_hash_size); |
|
GGML_ASSERT(galloc->hash_set.keys != NULL); |
|
|
|
free(galloc->hash_values); |
|
galloc->hash_values = malloc(sizeof(struct hash_node) * galloc->hash_set.size); |
|
GGML_ASSERT(galloc->hash_values != NULL); |
|
} |
|
|
|
|
|
for (int i = 0; i < galloc->n_buffers; i++) { |
|
ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); |
|
} |
|
|
|
|
|
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids); |
|
|
|
|
|
if (galloc->n_nodes < graph->n_nodes) { |
|
free(galloc->node_allocs); |
|
galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc)); |
|
GGML_ASSERT(galloc->node_allocs != NULL); |
|
} |
|
galloc->n_nodes = graph->n_nodes; |
|
for (int i = 0; i < graph->n_nodes; i++) { |
|
struct ggml_tensor * node = graph->nodes[i]; |
|
struct node_alloc * node_alloc = &galloc->node_allocs[i]; |
|
if (node->view_src || node->data) { |
|
node_alloc->dst.buffer_id = -1; |
|
node_alloc->dst.offset = SIZE_MAX; |
|
node_alloc->dst.size_max = 0; |
|
} else { |
|
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); |
|
node_alloc->dst.buffer_id = hn->buffer_id; |
|
node_alloc->dst.offset = hn->offset; |
|
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); |
|
} |
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * src = node->src[j]; |
|
if (!src || src->view_src || src->data) { |
|
node_alloc->src[j].buffer_id = -1; |
|
node_alloc->src[j].offset = SIZE_MAX; |
|
node_alloc->src[j].size_max = 0; |
|
} else { |
|
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); |
|
node_alloc->src[j].buffer_id = hn->buffer_id; |
|
node_alloc->src[j].offset = hn->offset; |
|
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); |
|
} |
|
} |
|
} |
|
if (galloc->n_leafs < graph->n_leafs) { |
|
free(galloc->leaf_allocs); |
|
galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0])); |
|
GGML_ASSERT(galloc->leaf_allocs != NULL); |
|
} |
|
galloc->n_leafs = graph->n_leafs; |
|
for (int i = 0; i < graph->n_leafs; i++) { |
|
struct ggml_tensor * leaf = graph->leafs[i]; |
|
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); |
|
if (leaf->view_src || leaf->data) { |
|
galloc->leaf_allocs[i].leaf.buffer_id = -1; |
|
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX; |
|
galloc->leaf_allocs[i].leaf.size_max = 0; |
|
} else { |
|
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id; |
|
galloc->leaf_allocs[i].leaf.offset = hn->offset; |
|
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); |
|
} |
|
} |
|
|
|
|
|
for (int i = 0; i < galloc->n_buffers; i++) { |
|
|
|
for (int j = 0; j < i; j++) { |
|
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) { |
|
galloc->buffers[i] = galloc->buffers[j]; |
|
break; |
|
} |
|
} |
|
|
|
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; |
|
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); |
|
|
|
|
|
if (new_size > cur_size || galloc->buffers[i] == NULL) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); |
|
#endif |
|
|
|
ggml_backend_buffer_free(galloc->buffers[i]); |
|
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); |
|
if (galloc->buffers[i] == NULL) { |
|
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); |
|
return false; |
|
} |
|
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE); |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { |
|
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL); |
|
} |
|
|
|
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) { |
|
int buffer_id = tensor_alloc->buffer_id; |
|
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); |
|
|
|
if (tensor->view_src != NULL) { |
|
if (tensor->buffer == NULL) { |
|
assert(tensor_alloc->offset == SIZE_MAX); |
|
if (tensor->view_src->buffer == NULL) { |
|
|
|
return; |
|
} |
|
ggml_backend_view_init(tensor); |
|
} |
|
} else { |
|
if (tensor->data == NULL) { |
|
assert(tensor_alloc->offset != SIZE_MAX); |
|
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); |
|
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); |
|
void * addr = (char *)base + tensor_alloc->offset; |
|
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr); |
|
} else { |
|
if (tensor->buffer == NULL) { |
|
|
|
return; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) { |
|
size_t node_size = 0; |
|
if (!node->data && !node->view_src) { |
|
GGML_ASSERT(talloc->buffer_id >= 0); |
|
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node); |
|
} |
|
return talloc->size_max >= node_size; |
|
} |
|
|
|
static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { |
|
if (galloc->n_nodes != graph->n_nodes) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: graph has different number of nodes\n", __func__); |
|
#endif |
|
return true; |
|
} |
|
|
|
if (galloc->n_leafs != graph->n_leafs) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: graph has different number of leafs\n", __func__); |
|
#endif |
|
return true; |
|
} |
|
|
|
for (int i = 0; i < graph->n_nodes; i++) { |
|
struct ggml_tensor * node = graph->nodes[i]; |
|
struct node_alloc * node_alloc = &galloc->node_allocs[i]; |
|
|
|
if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: node %s is not valid\n", __func__, node->name); |
|
#endif |
|
return true; |
|
} |
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * src = node->src[j]; |
|
if (src == NULL) { |
|
continue; |
|
} |
|
if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); |
|
#endif |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
return false; |
|
} |
|
|
|
bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { |
|
if (ggml_gallocr_needs_realloc(galloc, graph)) { |
|
if (galloc->n_buffers == 1) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: reallocating buffers automatically\n", __func__); |
|
#endif |
|
if (!ggml_gallocr_reserve(galloc, graph)) { |
|
return false; |
|
} |
|
} else { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); |
|
#endif |
|
return false; |
|
} |
|
} |
|
|
|
|
|
for (int i = 0; i < galloc->n_buffers; i++) { |
|
if (galloc->buffers[i] != NULL) { |
|
ggml_backend_buffer_reset(galloc->buffers[i]); |
|
} |
|
} |
|
|
|
|
|
|
|
for (int i = 0; i < graph->n_leafs; i++) { |
|
struct ggml_tensor * leaf = graph->leafs[i]; |
|
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i]; |
|
ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf); |
|
} |
|
|
|
for (int i = 0; i < graph->n_nodes; i++) { |
|
struct ggml_tensor * node = graph->nodes[i]; |
|
struct node_alloc * node_alloc = &galloc->node_allocs[i]; |
|
for (int j = 0; j < GGML_MAX_SRC; j++) { |
|
struct ggml_tensor * src = node->src[j]; |
|
if (src == NULL) { |
|
continue; |
|
} |
|
ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]); |
|
} |
|
ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { |
|
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); |
|
|
|
if (galloc->buffers[buffer_id] == NULL) { |
|
return 0; |
|
} |
|
|
|
for (int i = 0; i < buffer_id; i++) { |
|
if (galloc->buffers[i] == galloc->buffers[buffer_id]) { |
|
|
|
|
|
return 0; |
|
} |
|
} |
|
|
|
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); |
|
} |
|
|
|
|
|
|
|
static bool alloc_tensor_range(struct ggml_context * ctx, |
|
struct ggml_tensor * first, struct ggml_tensor * last, |
|
ggml_backend_buffer_type_t buft, size_t size, |
|
ggml_backend_buffer_t ** buffers, size_t * n_buffers) { |
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); |
|
if (buffer == NULL) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size); |
|
#endif |
|
for (size_t i = 0; i < *n_buffers; i++) { |
|
ggml_backend_buffer_free((*buffers)[i]); |
|
} |
|
free(*buffers); |
|
return false; |
|
} |
|
|
|
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer); |
|
|
|
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { |
|
if (t->data == NULL) { |
|
if (t->view_src == NULL) { |
|
ggml_tallocr_alloc(&tallocr, t); |
|
} else if (t->buffer == NULL) { |
|
ggml_backend_view_init(t); |
|
} |
|
} else { |
|
if (t->view_src != NULL && t->buffer == NULL) { |
|
|
|
ggml_backend_view_init(t); |
|
} |
|
} |
|
} |
|
|
|
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1)); |
|
(*buffers)[(*n_buffers)++] = buffer; |
|
|
|
return true; |
|
} |
|
|
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) { |
|
GGML_ASSERT(ggml_get_no_alloc(ctx) == true); |
|
|
|
size_t alignment = ggml_backend_buft_get_alignment(buft); |
|
size_t max_size = ggml_backend_buft_get_max_size(buft); |
|
|
|
ggml_backend_buffer_t * buffers = NULL; |
|
size_t n_buffers = 0; |
|
|
|
size_t cur_buf_size = 0; |
|
struct ggml_tensor * first = ggml_get_first_tensor(ctx); |
|
for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) { |
|
size_t this_size = 0; |
|
if (t->data == NULL && t->view_src == NULL) { |
|
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment); |
|
} |
|
|
|
if (this_size > max_size) { |
|
GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", |
|
__func__, t->name, |
|
ggml_backend_buft_name(buft), |
|
this_size, max_size); |
|
for (size_t i = 0; i < n_buffers; i++) { |
|
ggml_backend_buffer_free(buffers[i]); |
|
} |
|
free(buffers); |
|
return NULL; |
|
} |
|
|
|
if ((cur_buf_size + this_size) > max_size) { |
|
|
|
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) { |
|
return NULL; |
|
} |
|
first = t; |
|
cur_buf_size = this_size; |
|
} else { |
|
cur_buf_size += this_size; |
|
} |
|
} |
|
|
|
|
|
if (cur_buf_size > 0) { |
|
if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) { |
|
return NULL; |
|
} |
|
} |
|
|
|
if (n_buffers == 0) { |
|
#ifndef NDEBUG |
|
GGML_LOG_DEBUG("%s: all tensors in the context are already allocated\n", __func__); |
|
#endif |
|
return NULL; |
|
} |
|
|
|
ggml_backend_buffer_t buffer; |
|
if (n_buffers == 1) { |
|
buffer = buffers[0]; |
|
} else { |
|
buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers); |
|
} |
|
free(buffers); |
|
return buffer; |
|
} |
|
|
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) { |
|
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend)); |
|
} |
|
|