|
|
|
|
|
|
|
#include "arg.h" |
|
#include "common.h" |
|
#include "sampling.h" |
|
#include "log.h" |
|
#include "llama.h" |
|
|
|
#include <cmath> |
|
#include <cstdio> |
|
#include <string> |
|
#include <vector> |
|
#include <ctime> |
|
|
|
|
|
static std::string trim(const std::string & str) { |
|
size_t start = 0; |
|
size_t end = str.size(); |
|
|
|
while (start < end && isspace(str[start])) { |
|
start += 1; |
|
} |
|
|
|
while (end > start && isspace(str[end - 1])) { |
|
end -= 1; |
|
} |
|
|
|
return str.substr(start, end - start); |
|
} |
|
|
|
static std::string k_system = |
|
R"(Transcript of a never ending dialog, where the User interacts with an Assistant. |
|
The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. |
|
|
|
User: Recommend a nice restaurant in the area. |
|
Assistant: I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays. |
|
User: Who is Richard Feynman? |
|
Assistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?". |
|
User:)"; |
|
|
|
static std::vector<std::string> k_prompts = { |
|
"What is the meaning of life?", |
|
"Tell me an interesting fact about llamas.", |
|
"What is the best way to cook a steak?", |
|
"Are you familiar with the Special Theory of Relativity and can you explain it to me?", |
|
"Recommend some interesting books to read.", |
|
"What is the best way to learn a new language?", |
|
"How to get a job at Google?", |
|
"If you could have any superpower, what would it be?", |
|
"I want to learn how to play the piano.", |
|
}; |
|
|
|
struct client { |
|
~client() { |
|
if (smpl) { |
|
common_sampler_free(smpl); |
|
} |
|
} |
|
|
|
int32_t id = 0; |
|
|
|
llama_seq_id seq_id = -1; |
|
|
|
llama_token sampled; |
|
|
|
int64_t t_start_prompt; |
|
int64_t t_start_gen; |
|
|
|
int32_t n_prompt = 0; |
|
int32_t n_decoded = 0; |
|
int32_t i_batch = -1; |
|
|
|
std::string input; |
|
std::string prompt; |
|
std::string response; |
|
|
|
struct common_sampler * smpl = nullptr; |
|
}; |
|
|
|
static void print_date_time() { |
|
std::time_t current_time = std::time(nullptr); |
|
std::tm* local_time = std::localtime(¤t_time); |
|
char buffer[80]; |
|
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", local_time); |
|
|
|
LOG_INF("\n"); |
|
LOG_INF("\033[35mrun parameters as of %s\033[0m\n", buffer); |
|
LOG_INF("\n"); |
|
} |
|
|
|
|
|
static std::vector<std::string> split_string(const std::string& input, char delimiter) { |
|
std::vector<std::string> tokens; |
|
std::istringstream stream(input); |
|
std::string token; |
|
while (std::getline(stream, token, delimiter)) { |
|
tokens.push_back(token); |
|
} |
|
return tokens; |
|
} |
|
|
|
int main(int argc, char ** argv) { |
|
srand(1234); |
|
|
|
common_params params; |
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_PARALLEL)) { |
|
return 1; |
|
} |
|
|
|
common_init(); |
|
|
|
|
|
const int32_t n_clients = params.n_parallel; |
|
|
|
|
|
params.n_parallel += 1; |
|
|
|
|
|
const int32_t n_seq = params.n_sequences; |
|
|
|
|
|
const bool cont_batching = params.cont_batching; |
|
|
|
const bool dump_kv_cache = params.dump_kv_cache; |
|
|
|
|
|
llama_backend_init(); |
|
llama_numa_init(params.numa); |
|
|
|
|
|
common_init_result llama_init = common_init_from_params(params); |
|
|
|
llama_model * model = llama_init.model; |
|
llama_context * ctx = llama_init.context; |
|
|
|
|
|
if (params.prompt.empty()) { |
|
LOG_INF("\033[32mNo new questions so proceed with build-in defaults.\033[0m\n"); |
|
} else { |
|
|
|
int index = 0; |
|
LOG_INF("\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str()); |
|
|
|
std::vector<std::string> prompts = split_string(params.prompt, '\n'); |
|
for (const auto& prompt : prompts) { |
|
k_prompts.resize(index + 1); |
|
k_prompts[index] = prompt; |
|
index++; |
|
LOG_INF("%3d prompt: %s\n", index, prompt.c_str()); |
|
} |
|
} |
|
|
|
LOG_INF("\n\n"); |
|
|
|
const int n_ctx = llama_n_ctx(ctx); |
|
|
|
std::vector<client> clients(n_clients); |
|
for (size_t i = 0; i < clients.size(); ++i) { |
|
auto & client = clients[i]; |
|
client.id = i; |
|
client.smpl = common_sampler_init(model, params.sampling); |
|
} |
|
|
|
std::vector<llama_token> tokens_system; |
|
tokens_system = common_tokenize(ctx, k_system, true); |
|
const int32_t n_tokens_system = tokens_system.size(); |
|
|
|
llama_seq_id g_seq_id = 0; |
|
|
|
|
|
|
|
llama_batch batch = llama_batch_init(n_ctx, 0, 1); |
|
|
|
int32_t n_total_prompt = 0; |
|
int32_t n_total_gen = 0; |
|
int32_t n_cache_miss = 0; |
|
|
|
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients); |
|
|
|
const auto t_main_start = ggml_time_us(); |
|
|
|
LOG_INF("%s: Simulating parallel requests from clients:\n", __func__); |
|
LOG_INF("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system); |
|
LOG_INF("\n"); |
|
|
|
{ |
|
LOG_INF("%s: Evaluating the system prompt ...\n", __func__); |
|
|
|
for (int32_t i = 0; i < n_tokens_system; ++i) { |
|
common_batch_add(batch, tokens_system[i], i, { 0 }, false); |
|
} |
|
|
|
if (llama_decode(ctx, batch) != 0) { |
|
LOG_ERR("%s: llama_decode() failed\n", __func__); |
|
return 1; |
|
} |
|
|
|
|
|
for (int32_t i = 1; i <= n_clients; ++i) { |
|
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); |
|
} |
|
|
|
LOG_INF("\n"); |
|
} |
|
|
|
LOG_INF("Processing requests ...\n\n"); |
|
|
|
while (true) { |
|
if (dump_kv_cache) { |
|
llama_kv_cache_view_update(ctx, &kvc_view); |
|
common_kv_cache_dump_view_seqs(kvc_view, 40); |
|
} |
|
|
|
common_batch_clear(batch); |
|
|
|
|
|
for (auto & client : clients) { |
|
if (client.seq_id == -1) { |
|
continue; |
|
} |
|
|
|
client.i_batch = batch.n_tokens; |
|
|
|
common_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true); |
|
|
|
client.n_decoded += 1; |
|
} |
|
|
|
if (batch.n_tokens == 0) { |
|
|
|
for (int i = 1; i <= n_clients; ++i) { |
|
llama_kv_cache_seq_rm(ctx, i, -1, -1); |
|
|
|
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1); |
|
} |
|
|
|
LOG_INF("%s: clearing the KV cache\n", __func__); |
|
} |
|
|
|
|
|
if (cont_batching || batch.n_tokens == 0) { |
|
for (auto & client : clients) { |
|
if (client.seq_id == -1 && g_seq_id < n_seq) { |
|
client.seq_id = g_seq_id; |
|
|
|
client.t_start_prompt = ggml_time_us(); |
|
client.t_start_gen = 0; |
|
|
|
client.input = k_prompts[rand() % k_prompts.size()]; |
|
client.prompt = client.input + "\nAssistant:"; |
|
client.response = ""; |
|
|
|
common_sampler_reset(client.smpl); |
|
|
|
|
|
std::vector<llama_token> tokens_prompt; |
|
tokens_prompt = common_tokenize(ctx, client.prompt, false); |
|
|
|
for (size_t i = 0; i < tokens_prompt.size(); ++i) { |
|
common_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false); |
|
} |
|
|
|
|
|
if (batch.n_tokens > 0) { |
|
batch.logits[batch.n_tokens - 1] = true; |
|
} |
|
|
|
client.n_prompt = tokens_prompt.size(); |
|
client.n_decoded = 0; |
|
client.i_batch = batch.n_tokens - 1; |
|
|
|
LOG_INF("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id); |
|
|
|
g_seq_id += 1; |
|
|
|
|
|
|
|
|
|
|
|
} |
|
} |
|
} |
|
|
|
if (batch.n_tokens == 0) { |
|
break; |
|
} |
|
|
|
|
|
int32_t n_batch = params.n_batch; |
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i)); |
|
|
|
llama_batch batch_view = { |
|
n_tokens, |
|
batch.token + i, |
|
nullptr, |
|
batch.pos + i, |
|
batch.n_seq_id + i, |
|
batch.seq_id + i, |
|
batch.logits + i, |
|
}; |
|
|
|
const int ret = llama_decode(ctx, batch_view); |
|
if (ret != 0) { |
|
if (n_batch == 1 || ret < 0) { |
|
|
|
LOG_ERR("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret); |
|
return 1; |
|
} |
|
|
|
LOG_ERR("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2); |
|
|
|
n_cache_miss += 1; |
|
|
|
|
|
n_batch /= 2; |
|
i -= n_batch; |
|
|
|
continue; |
|
} |
|
|
|
LOG_DBG("%s : decoded batch of %d tokens\n", __func__, n_tokens); |
|
|
|
for (auto & client : clients) { |
|
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) { |
|
continue; |
|
} |
|
|
|
|
|
|
|
|
|
const llama_token id = common_sampler_sample(client.smpl, ctx, client.i_batch - i); |
|
|
|
common_sampler_accept(client.smpl, id, true); |
|
|
|
if (client.n_decoded == 1) { |
|
|
|
|
|
client.t_start_gen = ggml_time_us(); |
|
} |
|
|
|
const std::string token_str = common_token_to_piece(ctx, id); |
|
|
|
client.response += token_str; |
|
client.sampled = id; |
|
|
|
|
|
|
|
|
|
if (client.n_decoded > 2 && |
|
(llama_token_is_eog(model, id) || |
|
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) || |
|
client.response.find("User:") != std::string::npos || |
|
client.response.find('\n') != std::string::npos)) { |
|
|
|
const size_t pos = client.response.find("User:"); |
|
if (pos != std::string::npos) { |
|
client.response = client.response.substr(0, pos); |
|
} |
|
|
|
|
|
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1); |
|
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1); |
|
|
|
const auto t_main_end = ggml_time_us(); |
|
|
|
LOG_INF("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \n\nInput: %s\n\033[35mResponse: %s\033[0m\n\n", |
|
client.id, client.seq_id, n_seq, client.n_prompt, client.n_decoded, |
|
(t_main_end - client.t_start_prompt) / 1e6, |
|
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6, |
|
n_cache_miss, |
|
::trim(client.input).c_str(), |
|
::trim(client.response).c_str()); |
|
|
|
n_total_prompt += client.n_prompt; |
|
n_total_gen += client.n_decoded; |
|
|
|
client.seq_id = -1; |
|
} |
|
|
|
client.i_batch = -1; |
|
} |
|
} |
|
} |
|
|
|
const auto t_main_end = ggml_time_us(); |
|
|
|
print_date_time(); |
|
|
|
LOG_INF("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system); |
|
if (params.prompt_file.empty()) { |
|
params.prompt_file = "used built-in defaults"; |
|
} |
|
LOG_INF("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str()); |
|
LOG_INF("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str()); |
|
|
|
LOG_INF("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6); |
|
LOG_INF("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6); |
|
LOG_INF("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6); |
|
LOG_INF("Cache misses: %6d\n", n_cache_miss); |
|
|
|
LOG_INF("\n"); |
|
|
|
|
|
llama_perf_context_print(ctx); |
|
|
|
llama_batch_free(batch); |
|
|
|
llama_free(ctx); |
|
llama_free_model(model); |
|
|
|
llama_backend_free(); |
|
|
|
LOG("\n\n"); |
|
|
|
return 0; |
|
} |
|
|