File size: 7,081 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
/*
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "acl_tensor.h"

#include <algorithm>
#include <cstring>

aclDataType ggml_cann_type_mapping(ggml_type type) {
    switch (type) {
        case GGML_TYPE_F32:
            return ACL_FLOAT;
        case GGML_TYPE_F16:
            return ACL_FLOAT16;
        case GGML_TYPE_I8:
            return ACL_INT8;
        case GGML_TYPE_I16:
            return ACL_INT16;
        case GGML_TYPE_I32:
            return ACL_INT32;
        case GGML_TYPE_Q4_0:
            return ACL_INT4;
        case GGML_TYPE_Q8_0:
            return ACL_INT8;
        default:
            return ACL_DT_UNDEFINED;
    }
    return ACL_DT_UNDEFINED;
}

aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
                                   size_t* nb, int64_t dims, aclFormat format,
                                   size_t offset) {
    // If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
    // added.
    int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];

    int64_t acl_storage_len = 0;
    if (ne == nullptr) {
        acl_storage_len = ggml_nbytes(tensor);
        for (int i = 0; i < GGML_MAX_DIMS; i++) {
            acl_ne[i] = tensor->ne[i];
            // The step size of acl is in elements.
            acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
        }
    } else {
        // With bcast
        for (int i = 0; i < dims; i++) {
            acl_storage_len += (ne[i] - 1) * nb[i];
            acl_ne[i] = ne[i];
            acl_stride[i] = nb[i] / ggml_element_size(tensor);
        }
    }

    // Reverse ne and stride.
    int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
    std::reverse(acl_ne, acl_ne + final_dims);
    std::reverse(acl_stride, acl_stride + final_dims);

    aclTensor* acl_tensor = aclCreateTensor(
        acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
        offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
        tensor->data);

    return acl_tensor;
}

bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
            return true;
        }
    }
    return false;
}

int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
                                  const ggml_tensor* src1,
                                  int64_t* bcast_src0_ne,
                                  int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
                                  size_t* bcast_src1_nb) {
    GGML_ASSERT(ggml_can_repeat(src1, src0));
    int bcast_dim_cnt = 0;
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        int64_t nr = src0->ne[i] / src1->ne[i];
        bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
        bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
        bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
        bcast_src1_nb[bcast_dim_cnt] = src1->nb[i];
        bcast_dim_cnt++;
        if (nr != 1) {
            // Need to add an extra dim.
            bcast_src0_ne[bcast_dim_cnt] = nr;
            bcast_src1_ne[bcast_dim_cnt] = 1;
            bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
                                           bcast_src0_ne[bcast_dim_cnt - 1];
            bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
                                           bcast_src1_ne[bcast_dim_cnt - 1];
            bcast_dim_cnt++;
        }
    }
    return bcast_dim_cnt;
}

int64_t ggml_cann_get_mulmat_bcast_shape(
    const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
    const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
    int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
    size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
    // input and dst shoule in same shape, except first two dims.
    GGML_ASSERT(input_ne[2] == dst_ne[2]);
    GGML_ASSERT(input_ne[3] == dst_ne[3]);

    int bcast_dim_cnt = 0;

    // For mul_mat, a dimension needs to be added before the dimension that
    // weight needs to be expanded to satisfy the bcast rule of matrix
    // multiplication.
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        int64_t nr = input_ne[i] / weight_ne[i];
        // Do not use bcast in the first two dimensions because we only support
        // the bcast batch dimension. Just copy them.
        if (i < 2 || nr == 1) {
            bcast_input_ne[bcast_dim_cnt] = input_ne[i];
            bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
            bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];

            bcast_input_nb[bcast_dim_cnt] = input_nb[i];
            bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
            bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
            bcast_dim_cnt++;
        } else {
            // Need to add an extra dim.
            bcast_input_ne[bcast_dim_cnt] = nr;
            bcast_dst_ne[bcast_dim_cnt] = nr;
            bcast_weight_ne[bcast_dim_cnt] = 1;
            bcast_input_nb[bcast_dim_cnt] = input_nb[i];
            bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
            bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
            bcast_dim_cnt++;

            bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
            bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
            bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
            bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
                                            bcast_input_ne[bcast_dim_cnt - 1];
            bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
                                          bcast_dst_ne[bcast_dim_cnt - 1];
            bcast_weight_nb[bcast_dim_cnt] =
                bcast_weight_nb[bcast_dim_cnt - 1] *
                bcast_weight_ne[bcast_dim_cnt - 1];
            bcast_dim_cnt++;
        }
    }
    return bcast_dim_cnt;
}