File size: 77,376 Bytes
b664585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
// Note: porting this file to C++ is a work in progress

#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#   define NOMINMAX
#endif
#include <windows.h>
#endif

#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-alloc.h"
#include "ggml-impl.h"

#include <assert.h>
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <vector>

#ifdef __APPLE__
#include <sys/types.h>
#include <sys/sysctl.h>
#endif


// backend buffer type

const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
    return buft->iface.get_name(buft);
}

ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    if (size == 0) {
        // return a dummy buffer for zero-sized allocations
        return ggml_backend_buffer_init(buft, {}, NULL, 0);
    }

    return buft->iface.alloc_buffer(buft, size);
}

size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
    return buft->iface.get_alignment(buft);
}

size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
    // get_max_size is optional, defaults to SIZE_MAX
    if (buft->iface.get_max_size) {
        return buft->iface.get_max_size(buft);
    }
    return SIZE_MAX;
}

size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
    // get_alloc_size is optional, defaults to ggml_nbytes
    if (buft->iface.get_alloc_size) {
        size_t size = buft->iface.get_alloc_size(buft, tensor);
        assert(size >= ggml_nbytes(tensor));
        return size;
    }
    return ggml_nbytes(tensor);
}

bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
    if (buft->iface.is_host) {
        return buft->iface.is_host(buft);
    }
    return false;
}

ggml_backend_dev_t ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) {
    return buft->device;
}

// backend buffer

ggml_backend_buffer_t ggml_backend_buffer_init(
               ggml_backend_buffer_type_t buft,
        struct ggml_backend_buffer_i      iface,
               void *                     context,
               size_t                     size) {
    ggml_backend_buffer_t buffer = new ggml_backend_buffer {
        /* .interface = */ iface,
        /* .buft      = */ buft,
        /* .context   = */ context,
        /* .size      = */ size,
        /* .usage     = */ GGML_BACKEND_BUFFER_USAGE_ANY
    };

    return buffer;
}

const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
    return ggml_backend_buft_name(ggml_backend_buffer_get_type(buffer));
}

void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
    if (buffer == NULL) {
        return;
    }

    if (buffer->iface.free_buffer != NULL) {
        buffer->iface.free_buffer(buffer);
    }
    delete buffer;
}

size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
    return buffer->size;
}

void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
    // get_base is optional if the buffer is zero-sized
    if (buffer->size == 0) {
        return NULL;
    }

    void * base = buffer->iface.get_base(buffer);

    GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");

    return base;
}

void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
    // init_tensor is optional
    if (buffer->iface.init_tensor) {
        buffer->iface.init_tensor(buffer, tensor);
    }
}

void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    // clear is optional if the buffer is zero-sized
    if (buffer->size == 0) {
        return;
    }

    buffer->iface.clear(buffer, value);
}

size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
    return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
}

size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
    return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
}

size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
    return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
}

bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
    return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
}

void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
    buffer->usage = usage;

    // FIXME: add a generic callback to the buffer interface
    if (ggml_backend_buffer_is_multi_buffer(buffer)) {
        ggml_backend_multi_buffer_set_usage(buffer, usage);
    }
}

enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) {
    return buffer->usage;
}

ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
    return buffer->buft;
}

void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
    if (buffer->iface.reset) {
        buffer->iface.reset(buffer);
    }
}

bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
    ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
    if (dst_buf->iface.cpy_tensor) {
        return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
    }
    return false;
}

// backend

ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
    if (backend == NULL) {
        return NULL;
    }
    return backend->guid;
}

const char * ggml_backend_name(ggml_backend_t backend) {
    if (backend == NULL) {
        return "NULL";
    }
    return backend->iface.get_name(backend);
}

void ggml_backend_free(ggml_backend_t backend) {
    if (backend == NULL) {
        return;
    }

    backend->iface.free(backend);
}

ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
    return ggml_backend_dev_buffer_type(backend->device);
}

ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
    return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
}

size_t ggml_backend_get_alignment(ggml_backend_t backend) {
    return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
}

size_t ggml_backend_get_max_size(ggml_backend_t backend) {
    return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
}

void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");

    if (backend->iface.set_tensor_async == NULL) {
        ggml_backend_tensor_set(tensor, data, offset, size);
    } else {
        backend->iface.set_tensor_async(backend, tensor, data, offset, size);
    }
}

void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");

    if (backend->iface.get_tensor_async == NULL) {
        ggml_backend_tensor_get(tensor, data, offset, size);
    } else {
        backend->iface.get_tensor_async(backend, tensor, data, offset, size);
    }
}

void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    GGML_ASSERT(tensor);
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    if (size == 0) {
        return;
    }

    GGML_ASSERT(buf != NULL && "tensor buffer not set");
    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");

    buf->iface.set_tensor(buf, tensor, data, offset, size);
}

void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    GGML_ASSERT(tensor);
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    if (size == 0) {
        return;
    }

    GGML_ASSERT(buf != NULL && "tensor buffer not set");
    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");

    buf->iface.get_tensor(buf, tensor, data, offset, size);
}

void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
    ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;

    if (size == 0) {
        return;
    }

    GGML_ASSERT(buf != NULL && "tensor buffer not set");
    GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
    GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
    GGML_ASSERT(buf->iface.memset_tensor != NULL && "memset not implemented by backend buffer");

    buf->iface.memset_tensor(buf, tensor, value, offset, size);
}

void ggml_backend_synchronize(ggml_backend_t backend) {
    if (backend->iface.synchronize == NULL) {
        return;
    }

    backend->iface.synchronize(backend);
}

ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
    GGML_ASSERT(backend->iface.graph_plan_create != NULL);

    return backend->iface.graph_plan_create(backend, cgraph);
}

void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
    GGML_ASSERT(backend->iface.graph_plan_free != NULL);

    backend->iface.graph_plan_free(backend, plan);
}

enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
    GGML_ASSERT(backend->iface.graph_plan_compute != NULL);

    return backend->iface.graph_plan_compute(backend, plan);
}

enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
    enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
    ggml_backend_synchronize(backend);
    return err;
}

enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
    return backend->iface.graph_compute(backend, cgraph);
}

bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
    return ggml_backend_dev_supports_op(backend->device, op);
}

bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
    return ggml_backend_dev_supports_buft(backend->device, buft);
}

bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
    return ggml_backend_dev_offload_op(backend->device, op);
}

ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
    return backend->device;
}

// backend copy

static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
    if (a->type != b->type) {
        return false;
    }
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        if (a->ne[i] != b->ne[i]) {
            return false;
        }
        if (a->nb[i] != b->nb[i]) {
            return false;
        }
    }
    return true;
}

void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
    GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");

    if (src == dst) {
        return;
    }

    if (ggml_backend_buffer_is_host(src->buffer)) {
        ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
    } else if (ggml_backend_buffer_is_host(dst->buffer)) {
        ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
    } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
#ifndef NDEBUG
        GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
#endif
        size_t nbytes = ggml_nbytes(src);
        void * data = malloc(nbytes);
        ggml_backend_tensor_get(src, data, 0, nbytes);
        ggml_backend_tensor_set(dst, data, 0, nbytes);
        free(data);
    }
}

void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
    GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");

    if (src == dst) {
        return;
    }

    if (backend_dst->iface.cpy_tensor_async != NULL) {
        if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
            return;
        }
    }

    // an async copy would normally happen after all the queued operations on both backends are completed
    // to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
    ggml_backend_synchronize(backend_src);
    ggml_backend_synchronize(backend_dst);
    ggml_backend_tensor_copy(src, dst);
}

// events

ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device) {
    // null device is allowed for the transition period to the device interface
    if (device == NULL || device->iface.event_new == NULL) {
        return NULL;
    }
    return device->iface.event_new(device);
}

void ggml_backend_event_free(ggml_backend_event_t event) {
    if (event == NULL) {
        return;
    }
    event->device->iface.event_free(event->device, event);
}

void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) {
    GGML_ASSERT(backend->iface.event_record != NULL);

    backend->iface.event_record(backend, event);
}

void ggml_backend_event_synchronize(ggml_backend_event_t event) {
    GGML_ASSERT(event->device->iface.event_synchronize);

    event->device->iface.event_synchronize(event->device, event);
}

void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
    GGML_ASSERT(backend->iface.event_wait != NULL);

    backend->iface.event_wait(backend, event);
}

// Backend device

const char * ggml_backend_dev_name(ggml_backend_dev_t device) {
    return device->iface.get_name(device);
}

const char * ggml_backend_dev_description(ggml_backend_dev_t device) {
    return device->iface.get_description(device);
}

void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
    device->iface.get_memory(device, free, total);
}

enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
    return device->iface.get_type(device);
}

void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
    memset(props, 0, sizeof(*props));
    device->iface.get_props(device, props);
}

ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device) {
    return device->reg;
}

ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params) {
    return device->iface.init_backend(device, params);
}

ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device) {
    return device->iface.get_buffer_type(device);
}

ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) {
    if (device->iface.get_host_buffer_type == NULL) {
        return NULL;
    }

    return device->iface.get_host_buffer_type(device);
}

ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size) {
    return device->iface.buffer_from_host_ptr(device, ptr, size, max_tensor_size);
}

bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
    return device->iface.supports_op(device, op);
}

bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) {
    return device->iface.supports_buft(device, buft);
}

bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op) {
    if (device->iface.offload_op != NULL) {
        return device->iface.offload_op(device, op);
    }

    return false;
}

// Backend (reg)

const char * ggml_backend_reg_name(ggml_backend_reg_t reg) {
    return reg->iface.get_name(reg);
}

size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg) {
    return reg->iface.get_device_count(reg);
}

ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index) {
    return reg->iface.get_device(reg, index);
}

void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
    if (!reg->iface.get_proc_address) {
        return NULL;
    }
    return reg->iface.get_proc_address(reg, name);
}

// multi-buffer buffer

struct ggml_backend_multi_buffer_context {
    ggml_backend_buffer_t * buffers;
    size_t n_buffers;
};

static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
    for (size_t i = 0; i < ctx->n_buffers; i++) {
        ggml_backend_buffer_free(ctx->buffers[i]);
    }

    free(ctx->buffers);
    free(ctx);
}

static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
    for (size_t i = 0; i < ctx->n_buffers; i++) {
        ggml_backend_buffer_clear(ctx->buffers[i], value);
    }
}

static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
    /* .free_buffer     = */ ggml_backend_multi_buffer_free_buffer,
    /* .get_base        = */ NULL,
    /* .init_tensor     = */ NULL,
    /* .memset_tensor   = */ NULL,
    /* .set_tensor      = */ NULL,
    /* .get_tensor      = */ NULL,
    /* .cpy_tensor      = */ NULL,
    /* .clear           = */ ggml_backend_multi_buffer_clear,
    /* .reset           = */ NULL,
};

ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
    ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) malloc(sizeof(struct ggml_backend_multi_buffer_context));
    ctx->n_buffers = n_buffers;
    ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));

    GGML_ASSERT(ctx->buffers != NULL);

    size_t total_size = 0;
    for (size_t i = 0; i < n_buffers; i++) {
        ctx->buffers[i] = buffers[i];
        total_size += ggml_backend_buffer_get_size(buffers[i]);
    }

    return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_i, ctx, total_size);
}

bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
    return buffer->iface.free_buffer == ggml_backend_multi_buffer_free_buffer;
}

void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
    GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
    ggml_backend_multi_buffer_context * ctx = (ggml_backend_multi_buffer_context *) buffer->context;
    for (size_t i = 0; i < ctx->n_buffers; i++) {
        ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
    }
}

// creates a copy of the tensor with the same memory layout
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
    struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
    for (int i = 0; i < GGML_MAX_DIMS; i++) {
        dup->nb[i] = tensor->nb[i];
    }
    return dup;
}

static bool ggml_is_view_op(enum ggml_op op) {
    return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
}

// scheduler

#ifndef GGML_SCHED_MAX_BACKENDS
#define GGML_SCHED_MAX_BACKENDS 16
#endif

#ifndef GGML_SCHED_MAX_SPLIT_INPUTS
#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
#endif

#ifndef GGML_SCHED_MAX_COPIES
#define GGML_SCHED_MAX_COPIES 4
#endif

struct ggml_backend_sched_split {
    int backend_id;
    int i_start;
    int i_end;
    struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
    int n_inputs;
    // graph view of this split
    struct ggml_cgraph graph;
};

struct ggml_backend_sched {
    bool is_reset; // true if the scheduler has been reset since the last graph split
    bool is_alloc;

    int n_backends;

    ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
    ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
    ggml_gallocr_t galloc;

    // hash map of the nodes in the graph
    struct ggml_hash_set  hash_set;
    int                 * hv_tensor_backend_ids; // [hash_set.size]
    struct ggml_tensor ** hv_tensor_copies;      // [hash_set.size][n_backends][n_copies]

    int * node_backend_ids; // [graph_size]
    int * leaf_backend_ids; // [graph_size]

    int * prev_node_backend_ids; // [graph_size]
    int * prev_leaf_backend_ids; // [graph_size]

    // copy of the graph with modified inputs
    struct ggml_cgraph graph;

    // graph splits
    struct ggml_backend_sched_split * splits;
    int n_splits;
    int splits_capacity;

    // pipeline parallelism support
    int n_copies;
    int cur_copy;
    ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
    struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
    int n_graph_inputs;

    struct ggml_context * ctx;

    ggml_backend_sched_eval_callback callback_eval;
    void * callback_eval_user_data;

    char * context_buffer;
    size_t context_buffer_size;

    int debug;
};

#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
#define tensor_backend_id(tensor) sched->hv_tensor_backend_ids[hash_id(tensor)]
#define tensor_id_copy(id, backend_id, copy_id) sched->hv_tensor_copies[(id) * sched->n_backends * sched->n_copies + (backend_id) * sched->n_copies + (copy_id)]
#define tensor_copy(tensor, backend_id, copy_id) tensor_id_copy(hash_id(tensor), backend_id, copy_id)

// returns the priority of the backend, lower id is higher priority
static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
    for (int i = 0; i < sched->n_backends; i++) {
        if (sched->backends[i] == backend) {
            return i;
        }
    }
    return -1;
}

static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
    ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
    if (buffer == NULL) {
        return -1;
    }

    // find highest prio backend that supports the buffer type and the op
    for (int i = 0; i < sched->n_backends; i++) {
        if (ggml_backend_supports_buft(sched->backends[i], buffer->buft) &&
            ggml_backend_supports_op(sched->backends[i], op)) {
            return i;
        }
    }

#ifndef NDEBUG
    GGML_LOG_DEBUG("%s: warning: no backend supports op %s with a weight with buffer type %s used in tensor %s, the weight will need to be copied\n",
        __func__, ggml_op_desc(tensor), ggml_backend_buffer_name(buffer), tensor->name);
#endif

    return -1;
}

#if 0
#define GGML_SCHED_MAX_SPLITS_DEBUG 4096
static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
#define GET_CAUSE(node) causes[hash_id(node)]
#else
#define SET_CAUSE(node, ...)
#define GET_CAUSE(node) ""
#endif

// returns the backend that should be used for the node based on the current locations
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
    // assign pre-allocated nodes to their backend
    int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
    if (cur_backend_id != -1) {
        SET_CAUSE(tensor, "1.dst");
        return cur_backend_id;
    }

    // view_src
    if (tensor->view_src != NULL) {
        cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src, tensor);
        if (cur_backend_id != -1) {
            SET_CAUSE(tensor, "1.vsrc");
            return cur_backend_id;
        }
    }

    if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
        // since the tensor is pre-allocated, it cannot be moved to another backend
        ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
        GGML_ABORT("pre-allocated tensor (%s) in a buffer (%s) that cannot run the operation (%s)", tensor->name, ggml_backend_buffer_name(buffer), ggml_op_name(tensor->op));
    }

    // graph input
    if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
        cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
        SET_CAUSE(tensor, "1.inp");
        return cur_backend_id;
    }

    // operations with weights are preferably run on the same backend as the weights
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        const struct ggml_tensor * src = tensor->src[i];
        if (src == NULL) {
            continue;
        }
        // skip ROPE since the rope freqs tensor is too small to choose a backend based on it
        // not an ideal solution
        if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
            int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
            // check if a backend with higher prio wants to offload the op
            if (src_backend_id == sched->n_backends - 1) {
                for (int b = 0; b < src_backend_id; b++) {
                    if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
                        SET_CAUSE(tensor, "1.off");
                        return b;
                    }
                }
            }
            SET_CAUSE(tensor, "1.wgt%d", i);
            return src_backend_id;
        }
    }

    return -1;
}

static char * fmt_size(size_t size) {
    static char buffer[128];
    if (size >= 1024*1024) {
        snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
    } else {
        snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
    }
    return buffer;
}

static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
    int cur_split = 0;
    for (int i = 0; i < graph->n_nodes; i++) {
        if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
            ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
            GGML_LOG_DEBUG("\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
                sched->splits[cur_split].n_inputs);
            for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
                GGML_LOG_DEBUG("[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
                    fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
            }
            GGML_LOG_DEBUG("\n");
            cur_split++;
        }
        struct ggml_tensor * node = graph->nodes[i];
        if (ggml_is_view_op(node->op)) {
            continue;
        }
        if (sched->debug > 1) {
            ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
            GGML_LOG_DEBUG("node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
                fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
            for (int j = 0; j < GGML_MAX_SRC; j++) {
                struct ggml_tensor * src = node->src[j];
                if (src == NULL) {
                    continue;
                }
                ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
                GGML_LOG_DEBUG(" %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
                    fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
            }
            GGML_LOG_DEBUG("\n");
        }
    }
}

static bool ggml_backend_sched_buffer_supported(ggml_backend_sched_t sched, struct ggml_tensor * t, int backend_id) {
    ggml_backend_buffer_t buf = t->view_src ? t->view_src->buffer : t->buffer;
    ggml_backend_buffer_type_t buft = NULL;

    if (buf) {
        // the tensor is already allocated
        buft = buf->buft;
    } else {
        // see if the tensor already has a backend assigned, and use the buffer type of that backend
        int tensor_backend_id = tensor_backend_id(t);
        if (tensor_backend_id == -1 && t->view_src) {
            tensor_backend_id = tensor_backend_id(t->view_src);
        }
        if (tensor_backend_id != -1) {
            buft = sched->bufts[tensor_backend_id];
        }
    }

    return buft != NULL && ggml_backend_supports_buft(sched->backends[backend_id], buft);
}

static void ggml_backend_sched_set_if_supported(ggml_backend_sched_t sched, struct ggml_tensor * node, int cur_backend_id, int * node_backend_id) {
    if (ggml_backend_supports_op(sched->backends[cur_backend_id], node)) {
        *node_backend_id = cur_backend_id;
        SET_CAUSE(node, "2.sup");
    }
}

// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
    // reset splits
    sched->n_splits = 0;
    sched->n_graph_inputs = 0;
    sched->is_reset = false;

    struct ggml_init_params params = {
        /* .mem_size =   */ sched->context_buffer_size,
        /* .mem_buffer = */ sched->context_buffer,
        /* .no_alloc =   */ true
    };

    ggml_free(sched->ctx);

    sched->ctx = ggml_init(params);
    if (sched->ctx == NULL) {
        GGML_ABORT("%s: failed to initialize context\n", __func__);
    }

    // pass 1: assign backends to ops with pre-allocated inputs
    for (int i = 0; i < graph->n_leafs; i++) {
        struct ggml_tensor * leaf = graph->leafs[i];
        int * leaf_backend_id = &tensor_backend_id(leaf);
        // do not overwrite user assignments
        if (*leaf_backend_id == -1) {
            *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
        }
    }

    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        int * node_backend_id = &tensor_backend_id(node);
        // do not overwrite user assignments
        if (*node_backend_id == -1) {
            *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);

#if 0
            // src
            if (node->op == GGML_OP_NONE) {
                continue;
            }

            for (int j = 0; j < GGML_MAX_SRC; j++) {
                struct ggml_tensor * src = node->src[j];
                if (src == NULL) {
                    continue;
                }
                int * src_backend_id = &tensor_backend_id(src);
                if (*src_backend_id == -1) {
                    *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
                }
            }
#endif
        }
    }

    // pass 2: expand current backend assignments
    // assign the same backend to adjacent nodes
    // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
    // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
    // ops unsupported by the backend being expanded will be left unassigned so that they can be assigned later when the locations of its inputs are known
    // expand gpu down
    {
        int cur_backend_id = -1;
        for (int i = 0; i < graph->n_nodes; i++) {
            struct ggml_tensor * node = graph->nodes[i];
            if (ggml_is_view_op(node->op)) {
                continue;
            }
            int * node_backend_id = &tensor_backend_id(node);
            if (*node_backend_id != -1) {
                if (*node_backend_id == sched->n_backends - 1) {
                    // skip cpu (lowest prio backend)
                    cur_backend_id = -1;
                } else {
                    cur_backend_id = *node_backend_id;
                }
            } else if (cur_backend_id != -1) {
                ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
            }
        }
    }
    // expand gpu up
    {
        int cur_backend_id = -1;
        for (int i = graph->n_nodes - 1; i >= 0; i--) {
            struct ggml_tensor * node = graph->nodes[i];
            if (ggml_is_view_op(node->op)) {
                continue;
            }
            int * node_backend_id = &tensor_backend_id(node);
            if (*node_backend_id != -1) {
                if (*node_backend_id == sched->n_backends - 1) {
                    // skip cpu (lowest prio backend)
                    cur_backend_id = -1;
                } else {
                    cur_backend_id = *node_backend_id;
                }
            } else if (cur_backend_id != -1) {
                ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
            }
        }
    }
    // expand rest down
    {
        int cur_backend_id = -1;
        for (int i = 0; i < graph->n_nodes; i++) {
            struct ggml_tensor * node = graph->nodes[i];
            if (ggml_is_view_op(node->op)) {
                continue;
            }
            int * node_backend_id = &tensor_backend_id(node);
            if (*node_backend_id != -1) {
                cur_backend_id = *node_backend_id;
            } else if (cur_backend_id != -1) {
                ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
            }
        }
    }
    // expand rest up
    {
        int cur_backend_id = -1;
        for (int i = graph->n_nodes - 1; i >= 0; i--) {
            struct ggml_tensor * node = graph->nodes[i];
            if (ggml_is_view_op(node->op)) {
                continue;
            }
            int * node_backend_id = &tensor_backend_id(node);
            if (*node_backend_id != -1) {
                cur_backend_id = *node_backend_id;
            } else if (cur_backend_id != -1) {
                ggml_backend_sched_set_if_supported(sched, node, cur_backend_id, node_backend_id);
            }
        }
    }

    // pass 3: upgrade nodes to higher prio backends with compatible buffer types
    // if the tensor is already in the same buffer type (*) as another higher priority backend, we should move it there
    // however, we also need to verify that the sources are in compatible buffer types
    // (*) the actual requirement is more relaxed, the buffer type of the backend should be supported by all the users of this tensor further down the graph
    // however, this is slow to verify, so we have a more strict requirement that the buffer type is the same
    // this is not uncommon since multiple backends can use host memory, with the same buffer type (eg. BLAS and CPU)
    // additionally, set remaining unassigned nodes to the backend with the most supported inputs
    // only nodes that could not be assigned during expansion due to the backend not supporting the op should be unassigned at this point
    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        if (ggml_is_view_op(node->op)) {
            continue;
        }
        int * node_backend_id = &tensor_backend_id(node);
        if (*node_backend_id == -1) {
            // unassigned node: find the backend with the most supported inputs
            int n_supported_best = -1;
            for (int b = 0; b < sched->n_backends; b++) {
                if (ggml_backend_supports_op(sched->backends[b], node)) {
                    int n_supported = 0;
                    for (int j = 0; j < GGML_MAX_SRC; j++) {
                        struct ggml_tensor * src = node->src[j];
                        if (src == NULL) {
                            continue;
                        }
                        if ((tensor_backend_id(src) != -1 || tensor_backend_id(src->view_src) != -1) && ggml_backend_sched_buffer_supported(sched, src, b)) {
                            n_supported++;
                        }
                    }
                    if (n_supported > n_supported_best) {
                        n_supported_best = n_supported;
                        *node_backend_id = b;
                        SET_CAUSE(node, "3.best");
                    }
                }
            }
        } else {
            // assigned node: upgrade to higher prio backend if possible
            for (int b = 0; b < *node_backend_id; b++) {
                if (sched->bufts[b] == sched->bufts[*node_backend_id] && ggml_backend_supports_op(sched->backends[b], node)) {
                    bool supported = true;
                    for (int j = 0; j < GGML_MAX_SRC; j++) {
                        struct ggml_tensor * src = node->src[j];
                        if (src == NULL) {
                            continue;
                        }
                        if (!ggml_backend_sched_buffer_supported(sched, src, b)) {
                            supported = false;
                            break;
                        }
                    }
                    if (supported) {
                        *node_backend_id = b;
                        SET_CAUSE(node, "3.upg");
                        break;
                    }
                }
            }
        }
    }

    // pass 4: assign backends to remaining src from dst and view_src
    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        int * cur_backend_id = &tensor_backend_id(node);
        if (node->view_src != NULL && *cur_backend_id == -1) {
            *cur_backend_id = tensor_backend_id(node->view_src);
            SET_CAUSE(node, "4.vsrc");
        }
        for (int j = 0; j < GGML_MAX_SRC; j++) {
            struct ggml_tensor * src = node->src[j];
            if (src == NULL) {
                continue;
            }
            int * src_backend_id = &tensor_backend_id(src);
            if (*src_backend_id == -1) {
                if (src->view_src != NULL) {
                    // views are always on the same backend as the source
                    *src_backend_id = tensor_backend_id(src->view_src);
                    SET_CAUSE(src, "4.vsrc");
                } else {
                    *src_backend_id = *cur_backend_id;
                    SET_CAUSE(src, "4.cur");
                }
            }
        }
    }

    // pass 5: split graph, find tensors that need to be copied
    {
        int i_split = 0;
        struct ggml_backend_sched_split * split = &sched->splits[0];
        // find the backend of the first split, skipping view ops
        int i = 0;
        for (; i < graph->n_nodes; i++) {
            struct ggml_tensor * node = graph->nodes[i];
            if (!ggml_is_view_op(node->op)) {
                split->backend_id = tensor_backend_id(node);
                break;
            }
        }
        split->i_start = 0;
        split->n_inputs = 0;
        int cur_backend_id = split->backend_id;
        for (; i < graph->n_nodes; i++) {
            struct ggml_tensor * node = graph->nodes[i];

            if (ggml_is_view_op(node->op)) {
                continue;
            }

            const int node_backend_id = tensor_backend_id(node);

            assert(node_backend_id != -1); // all nodes should be assigned by now

            // check if we should start a new split based on the sources of the current node
            bool need_new_split = false;
            if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
                for (int j = 0; j < GGML_MAX_SRC; j++) {
                    struct ggml_tensor * src = node->src[j];
                    if (src == NULL) {
                        continue;
                    }
                    // check if a weight is on a different and incompatible backend
                    // by starting a new split, the memory of the previously offloaded weights can be reused
                    if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
                        int src_backend_id = tensor_backend_id(src);
                        if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
                            need_new_split = true;
                            break;
                        }
                    }
                    // check if the split has too many inputs
                    // FIXME: count the number of inputs instead of only checking when full
                    if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
                        const size_t id = hash_id(src);
                        int src_backend_id = sched->hv_tensor_backend_ids[id];
                        bool supported = ggml_backend_sched_buffer_supported(sched, src, cur_backend_id);
                        if (src_backend_id != cur_backend_id && tensor_id_copy(id, cur_backend_id, 0) == NULL && !supported) {
                            need_new_split = true;
                            break;
                        }
                    }
                }
            }

            if (node_backend_id != cur_backend_id || need_new_split) {
                split->i_end = i;
                i_split++;
                if (i_split >= sched->splits_capacity) {
                    sched->splits_capacity *= 2;
                    sched->splits = (ggml_backend_sched_split *)
                        realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
                    GGML_ASSERT(sched->splits != NULL);
                }
                split = &sched->splits[i_split];
                split->backend_id = node_backend_id;
                split->i_start = i;
                split->n_inputs = 0;
                cur_backend_id = node_backend_id;
            }

            // find inputs that are not on the same backend
            for (int j = 0; j < GGML_MAX_SRC; j++) {
                struct ggml_tensor * src = node->src[j];
                if (src == NULL) {
                    continue;
                }

                size_t src_id = hash_id(src);
                const int src_backend_id = sched->hv_tensor_backend_ids[src_id];
                assert(src_backend_id != -1); // all inputs should be assigned by now

                if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
                    if (tensor_id_copy(src_id, src_backend_id, 0) == NULL) {
                        ggml_backend_t backend = sched->backends[src_backend_id];
                        for (int c = 0; c < sched->n_copies; c++) {
                            struct ggml_tensor * tensor_copy;
                            if (c == sched->cur_copy) {
                                tensor_copy = src; // use the original tensor as the current copy
                            } else {
                                tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
                                ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
                            }
                            if (sched->n_copies > 1) {
                                ggml_set_input(tensor_copy);
                                ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
                            }
                            tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
                            SET_CAUSE(tensor_copy, "4.cpy");
                        }
                        int n_graph_inputs = sched->n_graph_inputs++;
                        GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
                        sched->graph_inputs[n_graph_inputs] = src;
                    }
                }

                if (src_backend_id != cur_backend_id && !ggml_backend_sched_buffer_supported(sched, src, cur_backend_id)) {
                    // create a copy of the input in the split's backend
                    if (tensor_id_copy(src_id, cur_backend_id, 0) == NULL) {
                        ggml_backend_t backend = sched->backends[cur_backend_id];
                        for (int c = 0; c < sched->n_copies; c++) {
                            struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
                            ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
                            if (sched->n_copies > 1) {
                                ggml_set_input(tensor_copy);
                                ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
                            }
                            tensor_id_copy(src_id, cur_backend_id, c) = tensor_copy;
                            SET_CAUSE(tensor_copy, "4.cpy");
                        }
                        int n_inputs = split->n_inputs++;
                        GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
                        split->inputs[n_inputs] = src;
                    }
                    node->src[j] = tensor_id_copy(src_id, cur_backend_id, sched->cur_copy);
                }
            }
        }
        split->i_end = graph->n_nodes;
        sched->n_splits = i_split + 1;
    }

    if (sched->debug) {
        ggml_backend_sched_print_assignments(sched, graph);
    }

    // swap node_backend_ids and leaf _backend_ids with prevs
    {
        int * tmp = sched->node_backend_ids;
        sched->node_backend_ids = sched->prev_node_backend_ids;
        sched->prev_node_backend_ids = tmp;

        tmp = sched->leaf_backend_ids;
        sched->leaf_backend_ids = sched->prev_leaf_backend_ids;
        sched->prev_leaf_backend_ids = tmp;
    }

    int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
    if (sched->graph.size < graph_size) {
        sched->graph.size = graph_size;
        sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
        sched->graph.leafs = (ggml_tensor **) realloc(sched->graph.leafs, graph_size * sizeof(struct ggml_tensor *));
        GGML_ASSERT(sched->graph.nodes != NULL);
        GGML_ASSERT(sched->graph.leafs != NULL);
    }
    sched->graph.n_nodes = 0;
    sched->graph.n_leafs = 0;

    struct ggml_cgraph * graph_copy = &sched->graph;

    for (int i = 0; i < sched->n_splits; i++) {
        struct ggml_backend_sched_split * split = &sched->splits[i];
        split->graph = ggml_graph_view(graph, split->i_start, split->i_end);

        // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
        for (int j = 0; j < split->n_inputs; j++) {
            assert(graph_copy->size > (graph_copy->n_nodes + 1));

            struct ggml_tensor * input = split->inputs[j];
            const size_t input_id = hash_id(input);
            struct ggml_tensor * input_cpy = tensor_id_copy(input_id, split->backend_id, sched->cur_copy);

            // add a dependency to the input source so that it is not freed before the copy is done
            struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
            input_dep->src[0] = input;
            sched->node_backend_ids[graph_copy->n_nodes] = sched->hv_tensor_backend_ids[input_id];
            graph_copy->nodes[graph_copy->n_nodes++] = input_dep;

            // add a dependency to the input copy so that it is allocated at the start of the split
            sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
            graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
        }

        for (int j = split->i_start; j < split->i_end; j++) {
            assert(graph_copy->size > graph_copy->n_nodes);
            sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
            graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
        }
    }

    if (sched->n_copies > 1) {
        // add input copies as leafs so that they are allocated first
        for (int i = 0; i < sched->n_graph_inputs; i++) {
            struct ggml_tensor * input = sched->graph_inputs[i];
            size_t id = hash_id(input);
            int backend_id = tensor_backend_id(input);
            for (int c = 0; c < sched->n_copies; c++) {
                struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
                sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
                assert(graph_copy->size > graph_copy->n_leafs);
                graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
            }
        }

        for (int i = 0; i < sched->n_splits; i++) {
            struct ggml_backend_sched_split * split = &sched->splits[i];
            int backend_id = split->backend_id;
            for (int j = 0; j < split->n_inputs; j++) {
                struct ggml_tensor * input = split->inputs[j];
                size_t id = hash_id(input);
                for (int c = 0; c < sched->n_copies; c++) {
                    struct ggml_tensor * input_cpy = tensor_id_copy(id, backend_id, c);
                    sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
                    assert(graph_copy->size > graph_copy->n_leafs);
                    graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
                }
            }
        }
    }

    // add leafs from the original graph
    for (int i = 0; i < graph->n_leafs; i++) {
        struct ggml_tensor * leaf = graph->leafs[i];
        sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
        assert(graph_copy->size > graph_copy->n_leafs);
        graph_copy->leafs[graph_copy->n_leafs++] = leaf;
    }
}

static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
    bool backend_ids_changed = false;
    for (int i = 0; i < sched->graph.n_nodes; i++) {
        if (sched->node_backend_ids[i] != sched->prev_node_backend_ids[i] &&
            sched->bufts[sched->node_backend_ids[i]] != sched->bufts[sched->prev_node_backend_ids[i]]) {
            backend_ids_changed = true;
            break;
        }
    }
    if (!backend_ids_changed) {
        for (int i = 0; i < sched->graph.n_leafs; i++) {
            if (sched->leaf_backend_ids[i] != sched->prev_leaf_backend_ids[i] &&
                sched->bufts[sched->leaf_backend_ids[i]] != sched->bufts[sched->prev_leaf_backend_ids[i]]) {
                backend_ids_changed = true;
                break;
            }
        }
    }

    // allocate graph
    if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
        // the re-allocation may cause the split inputs to be moved to a different address
        ggml_backend_sched_synchronize(sched);
#ifndef NDEBUG
        GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
        ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
        if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
            GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
            return false;
        }
    }

    return true;
}

static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
    struct ggml_backend_sched_split * splits = sched->splits;

    for (int i = 0; i < sched->n_splits; i++) {
        struct ggml_backend_sched_split * split = &splits[i];
        int split_backend_id = split->backend_id;
        ggml_backend_t split_backend = sched->backends[split_backend_id];

        // copy the input tensors to the split backend
        for (int j = 0; j < split->n_inputs; j++) {
            ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
            struct ggml_tensor * input = split->inputs[j];
            struct ggml_tensor * input_cpy = tensor_copy(input, split_backend_id, sched->cur_copy);

            if (input->flags & GGML_TENSOR_FLAG_INPUT) {
                // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
                if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
                    ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
                } else {
                    ggml_backend_synchronize(split_backend);
                }
                ggml_backend_tensor_copy(input, input_cpy);
            } else {
                // wait for the split backend to finish using the input before overwriting it
                if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
                    ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
                } else {
                    ggml_backend_synchronize(split_backend);
                }
                // try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
                // TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
                if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
                    ggml_backend_synchronize(input_backend);
                    if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
                        ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
                    } else {
                        ggml_backend_synchronize(split_backend);
                    }
                    ggml_backend_tensor_copy(input, input_cpy);
                }
            }
        }

        if (!sched->callback_eval) {
            enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
            if (ec != GGML_STATUS_SUCCESS) {
                return ec;
            }
        } else {
            // similar to ggml_backend_compare_graph_backend
            for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
                struct ggml_tensor * t = split->graph.nodes[j0];

                // check if the user needs data from this node
                bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);

                int j1 = j0;

                // determine the range [j0, j1] of nodes that can be computed together
                while (!need && j1 < split->graph.n_nodes - 1) {
                    t = split->graph.nodes[++j1];
                    need = sched->callback_eval(t, true, sched->callback_eval_user_data);
                }

                struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);

                enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
                if (ec != GGML_STATUS_SUCCESS) {
                    return ec;
                }

                // TODO: pass backend to the callback, then the user can decide if they want to synchronize
                ggml_backend_synchronize(split_backend);

                if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
                    break;
                }

                j0 = j1;
            }
        }

        // record the event of this copy
        if (split->n_inputs > 0) {
            if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
                ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy], split_backend);
            }
        }
    }

    sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;

    return GGML_STATUS_SUCCESS;
}

ggml_backend_sched_t ggml_backend_sched_new(
        ggml_backend_t * backends,
        ggml_backend_buffer_type_t * bufts,
        int n_backends,
        size_t graph_size,
        bool parallel) {
    GGML_ASSERT(n_backends > 0);
    GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
    GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);

    struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));

    const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
    sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
    sched->n_backends = n_backends;
    sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;

    // initialize hash table
    // FIXME: needs to be size*2 to account for leafs (do it in graph_split instead)
    sched->hash_set    = ggml_hash_set_new(graph_size);
    sched->hv_tensor_backend_ids = (int *) malloc(sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
    sched->hv_tensor_copies      = (ggml_tensor **) malloc(sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));

    const size_t ggml_sched_max_splits = graph_size; // at most there is one split for each node in the graph
    const size_t nodes_size = graph_size + ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2;
    sched->node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
    sched->leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
    sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
    sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));

    sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
    sched->context_buffer = (char *) malloc(sched->context_buffer_size);

    const int initial_splits_capacity = 16;
    sched->splits = (ggml_backend_sched_split *) calloc(initial_splits_capacity, sizeof(sched->splits[0]));
    sched->splits_capacity = initial_splits_capacity;

    for (int b = 0; b < n_backends; b++) {
        sched->backends[b] = backends[b];
        sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
        GGML_ASSERT(ggml_backend_supports_buft(backends[b], sched->bufts[b]));

        if (sched->n_copies > 1) {
            for (int c = 0; c < sched->n_copies; c++) {
                sched->events[b][c] = ggml_backend_event_new(backends[b]->device);
            }
        }
    }

    sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);

    ggml_backend_sched_reset(sched);

    return sched;
}

void ggml_backend_sched_free(ggml_backend_sched_t sched) {
    if (sched == NULL) {
        return;
    }
    for (int b = 0; b < sched->n_backends; b++) {
        for (int c = 0; c < sched->n_copies; c++) {
            ggml_backend_event_free(sched->events[b][c]);
        }
    }
    ggml_gallocr_free(sched->galloc);
    ggml_free(sched->ctx);
    ggml_hash_set_free(&sched->hash_set);
    free(sched->splits);
    free(sched->hv_tensor_backend_ids);
    free(sched->hv_tensor_copies);
    free(sched->node_backend_ids);
    free(sched->leaf_backend_ids);
    free(sched->prev_node_backend_ids);
    free(sched->prev_leaf_backend_ids);
    free(sched->context_buffer);
    free(sched->graph.nodes);
    free(sched->graph.leafs);
    free(sched);
}

void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
    // reset state for the next run
    if (!sched->is_reset) {
        ggml_hash_set_reset(&sched->hash_set);
        memset(sched->hv_tensor_backend_ids, -1, sched->hash_set.size * sizeof(sched->hv_tensor_backend_ids[0]));
        memset(sched->hv_tensor_copies,       0, sched->hash_set.size * sched->n_backends * sched->n_copies * sizeof(struct ggml_tensor *));
        sched->is_reset = true;
    }
    sched->is_alloc = false;
}

bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
    GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes + measure_graph->n_leafs);

    ggml_backend_sched_split_graph(sched, measure_graph);

    ggml_backend_sched_synchronize(sched);

    if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
        return false;
    }

    ggml_backend_sched_reset(sched);

    return true;
}

bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
    GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + graph->n_leafs);

    ggml_backend_sched_split_graph(sched, graph);


    if (!ggml_backend_sched_alloc_splits(sched)) {
        return false;
    }

    sched->is_alloc = true;

    return true;
}

enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
    enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
    ggml_backend_sched_synchronize(sched);
    return err;
}

enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
    if (!sched->is_reset && !sched->is_alloc) {
        ggml_backend_sched_reset(sched);
    }

    if (!sched->is_alloc) {
        if (!ggml_backend_sched_alloc_graph(sched, graph)) {
            return GGML_STATUS_ALLOC_FAILED;
        }
    }

    return ggml_backend_sched_compute_splits(sched);
}

void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
    for (int i = 0; i < sched->n_backends; i++) {
        ggml_backend_synchronize(sched->backends[i]);
    }
}

void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
    sched->callback_eval = callback;
    sched->callback_eval_user_data = user_data;
}

int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
    return sched->n_splits;
}

int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
    return sched->n_copies;
}

int ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) {
    return sched->n_backends;
}

ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) {
    GGML_ASSERT(i >= 0 && i < sched->n_backends);
    return sched->backends[i];
}

size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
    int backend_index = ggml_backend_sched_backend_id(sched, backend);
    GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);

    return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
}

void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
    int backend_index = ggml_backend_sched_backend_id(sched, backend);
    GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
    tensor_backend_id(node) = backend_index;
    SET_CAUSE(node, "usr");
    sched->is_reset = false;
}

ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
    int backend_index = tensor_backend_id(node);
    if (backend_index == -1) {
        return NULL;
    }
    return sched->backends[backend_index];
}

// utils

void ggml_backend_view_init(struct ggml_tensor * tensor) {
    GGML_ASSERT(tensor->buffer == NULL);
    GGML_ASSERT(tensor->view_src != NULL);
    GGML_ASSERT(tensor->view_src->buffer != NULL);
    GGML_ASSERT(tensor->view_src->data != NULL);

    tensor->buffer = tensor->view_src->buffer;
    tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
    ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
}

void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
    GGML_ASSERT(tensor->buffer == NULL);
    GGML_ASSERT(tensor->data == NULL);
    GGML_ASSERT(tensor->view_src == NULL);
    GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
    GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
                (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));

    tensor->buffer = buffer;
    tensor->data = addr;
    ggml_backend_buffer_init_tensor(buffer, tensor);
}

static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
    struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {

    GGML_ASSERT(src != NULL);
    GGML_ASSERT(src->data && "graph must be allocated");

    size_t id = ggml_hash_insert(&hash_set, src);
    if (id == GGML_HASHSET_ALREADY_EXISTS) {
        return node_copies[ggml_hash_find(&hash_set, src)];
    }

    struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
    if (src->view_src != NULL) {
        dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
        dst->view_offs = src->view_offs;
    }
    dst->op = src->op;
    memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
    ggml_set_name(dst, src->name);

    // copy src
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        struct ggml_tensor * s = src->src[i];
        if (s == NULL) {
            continue;
        }
        dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
    }

    node_copies[id] = dst;
    return dst;
}

static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
    size_t id = ggml_hash_find(hash_set, src);
    if (node_init[id]) {
        return;
    }
    node_init[id] = true;

    struct ggml_tensor * dst = node_copies[id];
    if (dst->view_src != NULL) {
        graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
        ggml_backend_view_init(dst);
    }
    else {
        ggml_backend_tensor_copy(src, dst);
    }

    // init src
    for (int i = 0; i < GGML_MAX_SRC; i++) {
        struct ggml_tensor * s = src->src[i];
        if (s == NULL) {
            continue;
        }
        graph_copy_init_tensor(hash_set, node_copies, node_init, s);
    }
}

struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
    struct ggml_hash_set hash_set = ggml_hash_set_new(graph->visited_hash_set.size);
    struct ggml_tensor ** node_copies = (ggml_tensor **) calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
    bool * node_init = (bool *) calloc(hash_set.size, sizeof(node_init[0]));

    struct ggml_init_params params = {
        /* .mem_size   = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
        /* .mem_buffer = */ NULL,
        /* .no_alloc   = */ true
    };

    struct ggml_context * ctx_allocated = ggml_init(params);
    struct ggml_context * ctx_unallocated = ggml_init(params);

    if (ctx_allocated == NULL || ctx_unallocated == NULL) {
        GGML_LOG_ERROR("%s: failed to allocate context for graph copy\n", __func__);
        ggml_hash_set_free(&hash_set);
        free(node_copies);
        free(node_init);
        ggml_free(ctx_allocated);
        ggml_free(ctx_unallocated);
        return {
            /* .buffer           = */ NULL,
            /* .ctx_allocated    = */ NULL,
            /* .ctx_unallocated  = */ NULL,
            /* .graph            = */ NULL,
        };
    }

    // dup nodes
    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
    }

    // allocate nodes
    ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
    if (buffer == NULL) {
        GGML_LOG_ERROR("%s: failed to allocate buffer for graph copy\n", __func__);
        ggml_hash_set_free(&hash_set);
        free(node_copies);
        free(node_init);
        ggml_free(ctx_allocated);
        ggml_free(ctx_unallocated);
        return {
            /* .buffer           = */ NULL,
            /* .ctx_allocated    = */ NULL,
            /* .ctx_unallocated  = */ NULL,
            /* .graph            = */ NULL,
        };
    }

    //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);

    // copy data and init views
    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        graph_copy_init_tensor(&hash_set, node_copies, node_init, node);
    }

    // build graph copy
    struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
    for (int i = 0; i < graph->n_nodes; i++) {
        struct ggml_tensor * node = graph->nodes[i];
        struct ggml_tensor * node_copy = node_copies[ggml_hash_find(&hash_set, node)];
        graph_copy->nodes[i] = node_copy;
    }
    graph_copy->n_nodes = graph->n_nodes;

    ggml_hash_set_free(&hash_set);
    free(node_copies);
    free(node_init);

    return {
        /* .buffer           = */ buffer,
        /* .ctx_allocated    = */ ctx_allocated,
        /* .ctx_unallocated  = */ ctx_unallocated,
        /* .graph            = */ graph_copy,
    };
}

void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
    ggml_backend_buffer_free(copy.buffer);
    ggml_free(copy.ctx_allocated);
    ggml_free(copy.ctx_unallocated);
}

bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
    struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
    if (copy.buffer == NULL) {
        return false;
    }

    struct ggml_cgraph * g1 = graph;
    struct ggml_cgraph * g2 = copy.graph;

    assert(g1->n_nodes == g2->n_nodes);

    for (int i = 0; i < g1->n_nodes; i++) {
        //printf("eval %d/%d\n", i, g1->n_nodes);
        struct ggml_tensor * t1 = g1->nodes[i];
        struct ggml_tensor * t2 = g2->nodes[i];

        assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));

        struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
        struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);

        ggml_backend_graph_compute(backend1, &g1v);
        ggml_backend_graph_compute(backend2, &g2v);

        if (ggml_is_view_op(t1->op)) {
            continue;
        }

        // compare results, calculate rms etc
        if (!callback(i, t1, t2, user_data)) {
            break;
        }
    }

    ggml_backend_graph_copy_free(copy);

    return true;
}

// CPU backend - buffer

static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
    uintptr_t data = (uintptr_t)buffer->context;

    // align the buffer
    if (data % TENSOR_ALIGNMENT != 0) {
        data = GGML_PAD(data, TENSOR_ALIGNMENT);
    }

    return (void *)data;
}

static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
    ggml_aligned_free(buffer->context, buffer->size);
}

static void ggml_backend_cpu_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
    memset((char *)tensor->data + offset, value, size);

    GGML_UNUSED(buffer);
}

static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
    memcpy((char *)tensor->data + offset, data, size);

    GGML_UNUSED(buffer);
}

static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
    memcpy(data, (const char *)tensor->data + offset, size);

    GGML_UNUSED(buffer);
}

static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
    if (ggml_backend_buffer_is_host(src->buffer)) {
        memcpy(dst->data, src->data, ggml_nbytes(src));
        return true;
    }
    return false;

    GGML_UNUSED(buffer);
}

static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
    memset(buffer->context, value, buffer->size);
}

static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
    /* .free_buffer     = */ ggml_backend_cpu_buffer_free_buffer,
    /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
    /* .init_tensor     = */ NULL, // no initialization required
    /* .memset_tensor   = */ ggml_backend_cpu_buffer_memset_tensor,
    /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
    /* .cpy_tensor      = */ ggml_backend_cpu_buffer_cpy_tensor,
    /* .clear           = */ ggml_backend_cpu_buffer_clear,
    /* .reset           = */ NULL,
};

static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
    /* .free_buffer     = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
    /* .get_base        = */ ggml_backend_cpu_buffer_get_base,
    /* .init_tensor     = */ NULL, // no initialization required
    /* .memset_tensor   = */ ggml_backend_cpu_buffer_memset_tensor,
    /* .set_tensor      = */ ggml_backend_cpu_buffer_set_tensor,
    /* .get_tensor      = */ ggml_backend_cpu_buffer_get_tensor,
    /* .cpy_tensor      = */ ggml_backend_cpu_buffer_cpy_tensor,
    /* .clear           = */ ggml_backend_cpu_buffer_clear,
    /* .reset           = */ NULL,
};

// CPU backend buffer type

// this buffer type is defined here to make it available to all backends

static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
    return "CPU";

    GGML_UNUSED(buft);
}

static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
    void * data = ggml_aligned_malloc(size);

    if (data == NULL) {
        GGML_LOG_ERROR("%s: failed to allocate buffer of size %zu\n", __func__, size);
        return NULL;
    }

    return ggml_backend_buffer_init(buft, ggml_backend_cpu_buffer_i, data, size);
}

static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
    return TENSOR_ALIGNMENT;

    GGML_UNUSED(buft);
}

static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
    return true;

    GGML_UNUSED(buft);
}

ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
    static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
        /* .iface   = */ {
            /* .get_name         = */ ggml_backend_cpu_buffer_type_get_name,
            /* .alloc_buffer     = */ ggml_backend_cpu_buffer_type_alloc_buffer,
            /* .get_alignment    = */ ggml_backend_cpu_buffer_type_get_alignment,
            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
            /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
            /* .is_host          = */ ggml_backend_cpu_buffer_type_is_host,
        },
        /* .device  = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
        /* .context = */ NULL,
    };

    return &ggml_backend_cpu_buffer_type;
}

static const char * ggml_backend_cpu_buffer_from_ptr_type_get_name(ggml_backend_buffer_type_t buft) {
    return "CPU_Mapped";

    GGML_UNUSED(buft);
}

static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
    static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
        /* .iface   = */ {
            /* .get_name         = */ ggml_backend_cpu_buffer_from_ptr_type_get_name,
            /* .alloc_buffer     = */ ggml_backend_cpu_buffer_type_alloc_buffer,
            /* .get_alignment    = */ ggml_backend_cpu_buffer_type_get_alignment,
            /* .get_max_size     = */ NULL, // defaults to SIZE_MAX
            /* .get_alloc_size   = */ NULL, // defaults to ggml_nbytes
            /* .is_host          = */ ggml_backend_cpu_buffer_type_is_host,
        },
        /* .device  = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
        /* .context = */ NULL,
    };

    return &ggml_backend_cpu_buffer_type;
}

ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
    GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
    return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
}