import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('pet_model.pkl') labels = learn.dls.vocab def predict(img): pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces, based on the blog post below." article="

Blog post

" examples = ['persian.jpg'] gr.Interface(fn=predict,inputs=gr.Image(),outputs=gr.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples).launch()