import argparse import os from pathlib import Path import logging import re_matching logging.getLogger("numba").setLevel(logging.WARNING) logging.getLogger("markdown_it").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("matplotlib").setLevel(logging.WARNING) logging.basicConfig( level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s" ) logger = logging.getLogger(__name__) import shutil from scipy.io.wavfile import write import librosa import numpy as np import torch import torch.nn as nn from torch.utils.data import Dataset from torch.utils.data import DataLoader, Dataset from tqdm import tqdm import gradio as gr import utils from config import config import torch import commons from text import cleaned_text_to_sequence, get_bert from text.cleaner import clean_text import utils from models import SynthesizerTrn from text.symbols import symbols import sys import re import random import hashlib from fugashi import Tagger import jaconv import unidic import subprocess import requests from ebooklib import epub import PyPDF2 from PyPDF2 import PdfReader from bs4 import BeautifulSoup import jieba import romajitable webBase = { 'pyopenjtalk-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', 'fugashi-V2.3-Katakana': 'https://mahiruoshi-mygo-vits-bert.hf.space/', } languages = [ "Auto", "ZH", "JP"] modelPaths = [] modes = ['pyopenjtalk-V2.3','fugashi-V2.3'] sentence_modes = ['sentence','paragraph'] net_g = None device = ( "cuda:0" if torch.cuda.is_available() else ( "mps" if sys.platform == "darwin" and torch.backends.mps.is_available() else "cpu" ) ) #device = "cpu" BandList = { "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], "Roselia":["友希那","紗夜","リサ","燐子","あこ"], "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], "Morfonica":["ましろ","瑠唯","つくし","七深","透子"], "MyGo":["燈","愛音","そよ","立希","楽奈"], "AveMujica":["祥子","睦","海鈴","にゃむ","初華"], "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] } #翻译 def translate(Sentence: str, to_Language: str = "jp", from_Language: str = ""): """ :param Sentence: 待翻译语句 :param from_Language: 待翻译语句语言 :param to_Language: 目标语言 :return: 翻译后语句 出错时返回None 常见语言代码:中文 zh 英语 en 日语 jp """ appid = "20231117001883321" key = "lMQbvZHeJveDceLof2wf" if appid == "" or key == "": return "请开发者在config.yml中配置app_key与secret_key" url = "https://fanyi-api.baidu.com/api/trans/vip/translate" texts = Sentence.splitlines() outTexts = [] for t in texts: if t != "": # 签名计算 参考文档 https://api.fanyi.baidu.com/product/113 salt = str(random.randint(1, 100000)) signString = appid + t + salt + key hs = hashlib.md5() hs.update(signString.encode("utf-8")) signString = hs.hexdigest() if from_Language == "": from_Language = "auto" headers = {"Content-Type": "application/x-www-form-urlencoded"} payload = { "q": t, "from": from_Language, "to": to_Language, "appid": appid, "salt": salt, "sign": signString, } # 发送请求 try: response = requests.post( url=url, data=payload, headers=headers, timeout=3 ) response = response.json() if "trans_result" in response.keys(): result = response["trans_result"][0] if "dst" in result.keys(): dst = result["dst"] outTexts.append(dst) except Exception: return Sentence else: outTexts.append(t) return "\n".join(outTexts) #文本清洗工具 def is_japanese(string): for ch in string: if ord(ch) > 0x3040 and ord(ch) < 0x30FF: return True return False def is_chinese(string): for ch in string: if '\u4e00' <= ch <= '\u9fff': return True return False def is_single_language(sentence): # 检查句子是否为单一语言 contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None contains_english = re.search(r'[a-zA-Z]', sentence) is not None language_count = sum([contains_chinese, contains_japanese, contains_english]) return language_count == 1 def merge_scattered_parts(sentences): """合并零散的部分到相邻的句子中,并确保单一语言性""" merged_sentences = [] buffer_sentence = "" for sentence in sentences: # 检查是否是单一语言或者太短(可能是标点或单个词) if is_single_language(sentence) and len(sentence) > 1: # 如果缓冲区有内容,先将缓冲区的内容添加到列表 if buffer_sentence: merged_sentences.append(buffer_sentence) buffer_sentence = "" merged_sentences.append(sentence) else: # 如果是零散的部分,将其添加到缓冲区 buffer_sentence += sentence # 确保最后的缓冲区内容被添加 if buffer_sentence: merged_sentences.append(buffer_sentence) return merged_sentences def is_only_punctuation(s): """检查字符串是否只包含标点符号""" # 此处列出中文、日文、英文常见标点符号 punctuation_pattern = re.compile(r'^[\s。*;,:“”()、!?《》\u3000\.,;:"\'?!()]+$') return punctuation_pattern.match(s) is not None def split_mixed_language(sentence): # 分割混合语言句子 # 逐字符检查,分割不同语言部分 sub_sentences = [] current_language = None current_part = "" for char in sentence: if re.match(r'[\u4e00-\u9fff]', char): # Chinese character if current_language != 'chinese': if current_part: sub_sentences.append(current_part) current_part = char current_language = 'chinese' else: current_part += char elif re.match(r'[\u3040-\u30ff\u31f0-\u31ff]', char): # Japanese character if current_language != 'japanese': if current_part: sub_sentences.append(current_part) current_part = char current_language = 'japanese' else: current_part += char elif re.match(r'[a-zA-Z]', char): # English character if current_language != 'english': if current_part: sub_sentences.append(current_part) current_part = char current_language = 'english' else: current_part += char else: current_part += char # For punctuation and other characters if current_part: sub_sentences.append(current_part) return sub_sentences def replace_quotes(text): # 替换中文、日文引号为英文引号 text = re.sub(r'[“”‘’『』「」()()]', '"', text) return text def remove_numeric_annotations(text): # 定义用于匹配数字注释的正则表达式 # 包括 “”、【】和〔〕包裹的数字 pattern = r'“\d+”|【\d+】|〔\d+〕' # 使用正则表达式替换掉这些注释 cleaned_text = re.sub(pattern, '', text) return cleaned_text def merge_adjacent_japanese(sentences): """合并相邻且都只包含日语的句子""" merged_sentences = [] i = 0 while i < len(sentences): current_sentence = sentences[i] if i + 1 < len(sentences) and is_japanese(current_sentence) and is_japanese(sentences[i + 1]): # 当前句子和下一句都是日语,合并它们 while i + 1 < len(sentences) and is_japanese(sentences[i + 1]): current_sentence += sentences[i + 1] i += 1 merged_sentences.append(current_sentence) i += 1 return merged_sentences def extrac(text): text = replace_quotes(remove_numeric_annotations(text)) # 替换引号 text = re.sub("<[^>]*>", "", text) # 移除 HTML 标签 # 使用换行符和标点符号进行初步分割 preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text) final_sentences = [] preliminary_sentences = re.split(r'([\n。;!?\.\?!])', text) for piece in preliminary_sentences: if is_single_language(piece): final_sentences.append(piece) else: sub_sentences = split_mixed_language(piece) final_sentences.extend(sub_sentences) # 处理长句子,使用jieba进行分词 split_sentences = [] for sentence in final_sentences: split_sentences.extend(split_long_sentences(sentence)) # 合并相邻的日语句子 merged_japanese_sentences = merge_adjacent_japanese(split_sentences) # 剔除只包含标点符号的元素 clean_sentences = [s for s in merged_japanese_sentences if not is_only_punctuation(s)] # 移除空字符串并去除多余引号 return [s.replace('"','').strip() for s in clean_sentences if s] # 移除空字符串 def is_mixed_language(sentence): contains_chinese = re.search(r'[\u4e00-\u9fff]', sentence) is not None contains_japanese = re.search(r'[\u3040-\u30ff\u31f0-\u31ff]', sentence) is not None contains_english = re.search(r'[a-zA-Z]', sentence) is not None languages_count = sum([contains_chinese, contains_japanese, contains_english]) return languages_count > 1 def split_mixed_language(sentence): # 分割混合语言句子 sub_sentences = re.split(r'(?<=[。!?\.\?!])(?=")|(?<=")(?=[\u4e00-\u9fff\u3040-\u30ff\u31f0-\u31ff]|[a-zA-Z])', sentence) return [s.strip() for s in sub_sentences if s.strip()] def seconds_to_ass_time(seconds): """将秒数转换为ASS时间格式""" hours = int(seconds / 3600) minutes = int((seconds % 3600) / 60) seconds = int(seconds) % 60 milliseconds = int((seconds - int(seconds)) * 1000) return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10)) def extract_text_from_epub(file_path): book = epub.read_epub(file_path) content = [] for item in book.items: if isinstance(item, epub.EpubHtml): soup = BeautifulSoup(item.content, 'html.parser') content.append(soup.get_text()) return '\n'.join(content) def extract_text_from_pdf(file_path): with open(file_path, 'rb') as file: reader = PdfReader(file) content = [page.extract_text() for page in reader.pages] return '\n'.join(content) def remove_annotations(text): # 移除方括号、尖括号和中文方括号中的内容 text = re.sub(r'\[.*?\]', '', text) text = re.sub(r'\<.*?\>', '', text) text = re.sub(r'``【oaicite:1】``', '', text) return text def extract_text_from_file(inputFile): file_extension = os.path.splitext(inputFile)[1].lower() if file_extension == ".epub": return extract_text_from_epub(inputFile) elif file_extension == ".pdf": return extract_text_from_pdf(inputFile) elif file_extension == ".txt": with open(inputFile, 'r', encoding='utf-8') as f: return f.read() else: raise ValueError(f"Unsupported file format: {file_extension}") def split_by_punctuation(sentence): """按照中文次级标点符号分割句子""" # 常见的中文次级分隔符号:逗号、分号等 parts = re.split(r'([,,;;])', sentence) # 将标点符号与前面的词语合并,避免单独标点符号成为一个部分 merged_parts = [] for part in parts: if part and not part in ',,;;': merged_parts.append(part) elif merged_parts: merged_parts[-1] += part return merged_parts def split_long_sentences(sentence, max_length=30): """如果中文句子太长,先按标点分割,必要时使用jieba进行分词并分割""" if len(sentence) > max_length and is_chinese(sentence): # 首先尝试按照次级标点符号分割 preliminary_parts = split_by_punctuation(sentence) new_sentences = [] for part in preliminary_parts: # 如果部分仍然太长,使用jieba进行分词 if len(part) > max_length: words = jieba.lcut(part) current_sentence = "" for word in words: if len(current_sentence) + len(word) > max_length: new_sentences.append(current_sentence) current_sentence = word else: current_sentence += word if current_sentence: new_sentences.append(current_sentence) else: new_sentences.append(part) return new_sentences return [sentence] # 如果句子不长或不是中文,直接返回 def extract_and_convert(text): # 使用正则表达式找出所有英文单词 english_parts = re.findall(r'\b[A-Za-z]+\b', text) # \b为单词边界标识 # 对每个英文单词进行片假名转换 kana_parts = ['\n{}\n'.format(romajitable.to_kana(word).katakana) for word in english_parts] # 替换原文本中的英文部分 for eng, kana in zip(english_parts, kana_parts): text = text.replace(eng, kana, 1) # 限制每次只替换一个实例 return text # 推理工具 def download_unidic(): try: Tagger() print("Tagger launch successfully.") except Exception as e: print("UNIDIC dictionary not found, downloading...") subprocess.run([sys.executable, "-m", "unidic", "download"]) print("Download completed.") def kanji_to_hiragana(text): global tagger output = "" # 更新正则表达式以更准确地区分文本和标点符号 segments = re.findall(r'[一-龥ぁ-んァ-ン\w]+|[^\一-龥ぁ-んァ-ン\w\s]', text, re.UNICODE) for segment in segments: if re.match(r'[一-龥ぁ-んァ-ン\w]+', segment): # 如果是单词或汉字,转换为平假名 for word in tagger(segment): kana = word.feature.kana or word.surface hiragana = jaconv.kata2hira(kana) # 将片假名转换为平假名 output += hiragana else: # 如果是标点符号,保持不变 output += segment return output def get_net_g(model_path: str, device: str, hps): net_g = SynthesizerTrn( len(symbols), hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ).to(device) _ = net_g.eval() _ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True) return net_g def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): style_text = None if style_text == "" else style_text norm_text, phone, tone, word2ph = clean_text(text, language_str) phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) if hps.data.add_blank: phone = commons.intersperse(phone, 0) tone = commons.intersperse(tone, 0) language = commons.intersperse(language, 0) for i in range(len(word2ph)): word2ph[i] = word2ph[i] * 2 word2ph[0] += 1 bert_ori = get_bert( norm_text, word2ph, language_str, device, style_text, style_weight ) del word2ph assert bert_ori.shape[-1] == len(phone), phone if language_str == "ZH": bert = bert_ori ja_bert = torch.randn(1024, len(phone)) en_bert = torch.randn(1024, len(phone)) elif language_str == "JP": bert = torch.randn(1024, len(phone)) ja_bert = bert_ori en_bert = torch.randn(1024, len(phone)) elif language_str == "EN": bert = torch.randn(1024, len(phone)) ja_bert = torch.randn(1024, len(phone)) en_bert = bert_ori else: raise ValueError("language_str should be ZH, JP or EN") assert bert.shape[-1] == len( phone ), f"Bert seq len {bert.shape[-1]} != {len(phone)}" phone = torch.LongTensor(phone) tone = torch.LongTensor(tone) language = torch.LongTensor(language) return bert, ja_bert, en_bert, phone, tone, language def infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, language = "Auto", mode = 'pyopenjtalk-V2.3', skip_start=False, skip_end=False, ): if style_text == None: style_text = "" style_weight=0, if mode == 'fugashi-V2.3': text = kanji_to_hiragana(text) if is_japanese(text) else text if language == "JP": text = translate(text,"jp") if language == "ZH": text = translate(text,"zh") if language == "Auto": language= 'JP' if is_japanese(text) else 'ZH' #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{sid}:{language}:{mode}:{skip_start}:{skip_end}') bert, ja_bert, en_bert, phones, tones, lang_ids = get_text( text, language, hps, device, style_text=style_text, style_weight=style_weight, ) if skip_start: phones = phones[3:] tones = tones[3:] lang_ids = lang_ids[3:] bert = bert[:, 3:] ja_bert = ja_bert[:, 3:] en_bert = en_bert[:, 3:] if skip_end: phones = phones[:-2] tones = tones[:-2] lang_ids = lang_ids[:-2] bert = bert[:, :-2] ja_bert = ja_bert[:, :-2] en_bert = en_bert[:, :-2] with torch.no_grad(): x_tst = phones.to(device).unsqueeze(0) tones = tones.to(device).unsqueeze(0) lang_ids = lang_ids.to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) ja_bert = ja_bert.to(device).unsqueeze(0) en_bert = en_bert.to(device).unsqueeze(0) x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device) # emo = emo.to(device).unsqueeze(0) del phones speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device) audio = ( net_g.infer( x_tst, x_tst_lengths, speakers, tones, lang_ids, bert, ja_bert, en_bert, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, )[0][0, 0] .data.cpu() .float() .numpy() ) del ( x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, ) # , emo if torch.cuda.is_available(): torch.cuda.empty_cache() print("Success.") return audio def loadmodel(model): _ = net_g.eval() _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True) return "success" def generate_audio_and_srt_for_group( group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, speakerList, silenceTime, language, mode, skip_start, skip_end, style_text, style_weight, ): audio_fin = [] ass_entries = [] start_time = 0 #speaker = random.choice(cara_list) ass_header = """[Script Info] ; 我没意见 Title: Audiobook ScriptType: v4.00+ WrapStyle: 0 PlayResX: 640 PlayResY: 360 ScaledBorderAndShadow: yes [V4+ Styles] Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1 [Events] Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text """ for sentence in group: try: if len(sentence) > 1: FakeSpeaker = sentence.split("|")[0] print(FakeSpeaker) SpeakersList = re.split('\n', speakerList) if FakeSpeaker in list(hps.data.spk2id.keys()): speaker = FakeSpeaker for i in SpeakersList: if FakeSpeaker == i.split("|")[1]: speaker = i.split("|")[0] if sentence != '\n': text = (remove_annotations(sentence.split("|")[-1]).replace(" ","")+"。").replace(",。","。") if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': #print(f'{text}:{sdp_ratio}:{noise_scale}:{noise_scale_w}:{length_scale}:{length_scale}:{speaker}:{language}:{mode}:{skip_start}:{skip_end}') audio = infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, style_text, style_weight, language, mode, skip_start, skip_end, ) silence_frames = int(silenceTime * 44010) if is_chinese(sentence) else int(silenceTime * 44010) silence_data = np.zeros((silence_frames,), dtype=audio.dtype) audio_fin.append(audio) audio_fin.append(silence_data) duration = len(audio) / sampling_rate print(duration) end_time = start_time + duration + silenceTime ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":"))) start_time = end_time except: pass wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav') ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass') write(wav_filename, sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) with open(ass_filename, 'w', encoding='utf-8') as f: f.write(ass_header + '\n'.join(ass_entries)) return (hps.data.sampling_rate, gr.processing_utils.convert_to_16_bit_wav(np.concatenate(audio_fin))) def generate_audio( inputFile, groupSize, filepath, silenceTime, speakerList, text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text=None, style_weight=0.7, language = "Auto", mode = 'pyopenjtalk-V2.3', sentence_mode = 'sentence', skip_start=False, skip_end=False, ): if inputFile: text = extract_text_from_file(inputFile.name) sentence_mode = 'paragraph' if mode == 'pyopenjtalk-V2.3' or mode == 'fugashi-V2.3': if sentence_mode == 'sentence': audio = infer( text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, style_text, style_weight, language, mode, skip_start, skip_end, ) return (hps.data.sampling_rate,gr.processing_utils.convert_to_16_bit_wav(audio)) if sentence_mode == 'paragraph': GROUP_SIZE = groupSize directory_path = filepath if torch.cuda.is_available() else "books" if os.path.exists(directory_path): shutil.rmtree(directory_path) os.makedirs(directory_path) if language == 'Auto': sentences = extrac(extract_and_convert(text)) else: sentences = extrac(text) for i in range(0, len(sentences), GROUP_SIZE): group = sentences[i:i+GROUP_SIZE] if speakerList == "": speakerList = "无" result = generate_audio_and_srt_for_group( group, directory_path, i//GROUP_SIZE + 1, 44100, sid, sdp_ratio, noise_scale, noise_scale_w, length_scale, speakerList, silenceTime, language, mode, skip_start, skip_end, style_text, style_weight, ) if not torch.cuda.is_available(): return result return result #url = f'{webBase[mode]}?text={text}&speaker={sid}&sdp_ratio={sdp_ratio}&noise_scale={noise_scale}&noise_scale_w={noise_scale_w}&length_scale={length_scale}&language={language}&skip_start={skip_start}&skip_end={skip_end}' #print(url) #res = requests.get(url) #改用post res = requests.post(webBase[mode], json = { "groupSize": groupSize, "filepath": filepath, "silenceTime": silenceTime, "speakerList": speakerList, "text": text, "speaker": sid, "sdp_ratio": sdp_ratio, "noise_scale": noise_scale, "noise_scale_w": noise_scale_w, "length_scale": length_scale, "language": language, "skip_start": skip_start, "skip_end": skip_end, "mode": mode, "sentence_mode": sentence_mode, "style_text": style_text, "style_weight": style_weight }) audio = res.content with open('output.wav', 'wb') as code: code.write(audio) file_path = "output.wav" return file_path if __name__ == "__main__": download_unidic() tagger = Tagger() for dirpath, dirnames, filenames in os.walk('Data/BangDream/models/'): for filename in filenames: modelPaths.append(os.path.join(dirpath, filename)) hps = utils.get_hparams_from_file('Data/BangDream/config.json') net_g = get_net_g( model_path=modelPaths[-1], device=device, hps=hps ) speaker_ids = hps.data.spk2id speakers = list(speaker_ids.keys()) with gr.Blocks() as app: gr.Markdown(value=""" ([Bert-Vits2](https://github.com/Stardust-minus/Bert-VITS2) V2.3)少歌邦邦全员在线语音合成\n [好玩的](http://love.soyorin.top/)\n 该界面的真实链接(国内可用): https://mahiruoshi-bangdream-bert-vits2.hf.space/\n API: https://mahiruoshi-bert-vits2-api.hf.space/ \n 调用方式: https://mahiruoshi-bert-vits2-api.hf.space/?text={{speakText}}&speaker=chosen_speaker\n 推荐搭配[Legado开源阅读](https://github.com/gedoor/legado)或[聊天bot](https://github.com/Paraworks/BangDreamAi)使用\n 二创请标注作者:B站@Mahiroshi: https://space.bilibili.com/19874615\n 训练数据集归属:BangDream及少歌手游,提取自BestDori,[数据集获取流程](https://nijigaku.top/2023/09/29/Bestbushiroad%E8%AE%A1%E5%88%92-vits-%E9%9F%B3%E9%A2%91%E6%8A%93%E5%8F%96%E5%8F%8A%E6%95%B0%E6%8D%AE%E9%9B%86%E5%AF%B9%E9%BD%90/)\n BangDream数据集下载[链接](https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/%E7%88%AC%E8%99%AB/SortPathUrl.txt)\n !!!注意:huggingface容器仅用作展示,建议在右上角更多选项中克隆本项目或Docker运行app.py/server.py,环境参考requirements.txt\n""") for band in BandList: with gr.TabItem(band): for name in BandList[band]: with gr.TabItem(name): with gr.Row(): with gr.Column(): with gr.Row(): gr.Markdown( '