# ---------------------------------------------------------------------------- # SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder Based Speech-Text Pre-training (https://arxiv.org/abs/2210.03730) # Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechUT # Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 # # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # ---------------------------------------------------------------------------- import logging import contextlib import torch import torch.nn as nn from argparse import Namespace from dataclasses import dataclass from typing import Any from fairseq import checkpoint_utils, tasks from fairseq.models import BaseFairseqModel, register_model from fairseq.models.fairseq_encoder import FairseqEncoder from fairseq.tasks import FairseqTask from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.data.data_utils import lengths_to_padding_mask from fairseq.models.hubert import HubertAsrConfig logger = logging.getLogger(__name__) @dataclass class SpeechUTS2TConfig(HubertAsrConfig): ### the following config is only for the compatibility to fairseq speech_to_text task input_feat_per_channel: Any = None input_channels: Any = None speaker_to_id: Any = None @register_model("speechut_st_legacy", dataclass=SpeechUTS2TConfig) class SpeechUTS2T(BaseFairseqModel): """An encoder-decoder model.""" def __init__(self, cfg: SpeechUTS2TConfig, encoder: FairseqEncoder): super().__init__() self.cfg = cfg self.encoder = encoder def upgrade_state_dict_named(self, state_dict, name): super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: SpeechUTS2TConfig, task: FairseqTask): """Build a new model instance.""" encoder = SpeechUTEncoder(cfg, task) return cls(cfg, encoder) def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs): encoder_out = self.encoder(src_tokens, src_lengths, **kwargs) decoder_out = self.encoder.w2v_model.decoder( prev_output_tokens, encoder_out=encoder_out, **kwargs ) return decoder_out def forward_decoder(self, prev_output_tokens, **kwargs): return self.encoder.w2v_model.decoder(prev_output_tokens, **kwargs) def get_normalized_probs(self, net_output, log_probs, sample=None): """For decoder decoding.""" return self.encoder.w2v_model.decoder.get_normalized_probs(net_output, log_probs, sample) @property def decoder(self): return self.encoder.w2v_model.decoder class SpeechUTEncoder(FairseqEncoder): """ Modified from fairseq.models.hubert.hubert_asr.HubertEncoder 1. make it compatible with fairseq speech_to_text task 2. make it compatible with encoder-decoder model """ def __init__(self, cfg: SpeechUTS2TConfig, task): self.apply_mask = cfg.apply_mask arg_overrides = { "dropout": cfg.dropout, "activation_dropout": cfg.activation_dropout, "dropout_input": cfg.dropout_input, "attention_dropout": cfg.attention_dropout, "mask_length": cfg.mask_length, "mask_prob": cfg.mask_prob, "mask_selection": cfg.mask_selection, "mask_other": cfg.mask_other, "no_mask_overlap": cfg.no_mask_overlap, "mask_channel_length": cfg.mask_channel_length, "mask_channel_prob": cfg.mask_channel_prob, "mask_channel_selection": cfg.mask_channel_selection, "mask_channel_other": cfg.mask_channel_other, "no_mask_channel_overlap": cfg.no_mask_channel_overlap, "encoder_layerdrop": cfg.layerdrop, "feature_grad_mult": cfg.feature_grad_mult, } if cfg.w2v_args is None: state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides) w2v_args = state.get("cfg", None) if w2v_args is None: w2v_args = convert_namespace_to_omegaconf(state["args"]) cfg.w2v_args = w2v_args else: state = None w2v_args = cfg.w2v_args if isinstance(w2v_args, Namespace): cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args) assert task.data_cfg.standardize_audio() == w2v_args.task.normalize, ( "Fine-tuning works best when data normalization is the same. " "Please check that --normalize is set or unset for " "both pre-training and here" ) pretrain_task = tasks.setup_task(w2v_args.task, load_local_states=False) assert state is not None and "task_state" in state, f"the stored dictionaries not found in checkpoint!" # This will load the stored "dictionaries" object pretrain_task.load_state_dict(state["task_state"]) model = pretrain_task.build_model(w2v_args.model, from_checkpoint=True) if state is not None and not cfg.no_pretrained_weights: try: model.load_state_dict(state["model"], strict=True) except Exception as e: logger.warn(e) model.load_state_dict(state["model"], strict=False) model.remove_pretraining_modules() super().__init__(pretrain_task.source_dictionary) d = w2v_args.model.encoder_embed_dim self.w2v_model = model self.final_dropout = nn.Dropout(cfg.final_dropout) self.freeze_finetune_updates = cfg.freeze_finetune_updates self.num_updates = 0 def set_num_updates(self, num_updates): """Set the number of parameters updates.""" super().set_num_updates(num_updates) self.num_updates = num_updates def forward(self, src_tokens=None, src_lengths=None, **kwargs): w2v_args = { "source": src_tokens, "padding_mask": lengths_to_padding_mask(src_lengths), "mask": self.apply_mask and self.training, } ft = self.freeze_finetune_updates <= self.num_updates with torch.no_grad() if not ft else contextlib.ExitStack(): x, padding_mask = self.w2v_model.extract_features(**w2v_args) # B x T x C -> T x B x C x = x.transpose(0, 1) return { "encoder_out": [x], # T x B x C "encoder_padding_mask": [padding_mask], # B x T "padding_mask": [padding_mask], } def forward_torchscript(self, net_input): """A TorchScript-compatible version of forward. Forward the encoder out. """ _net_input = { "source": net_input["src_tokens"], "padding_mask": lengths_to_padding_mask(net_input["src_lengths"]), "mask": False, } x, padding_mask = self.w2v_model.extract_features(**_net_input) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_out = { "encoder_out" : [x], "encoder_padding_mask" : [padding_mask], } return encoder_out def reorder_encoder_out(self, encoder_out, new_order): if encoder_out["encoder_out"] is not None: encoder_out["encoder_out"] = [ x.index_select(1, new_order) for x in encoder_out["encoder_out"] ] if encoder_out["encoder_padding_mask"] is not None: encoder_out["encoder_padding_mask"] = [ x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"] ] return encoder_out def max_positions(self): """Maximum input length supported by the encoder.""" return None def upgrade_state_dict_named(self, state_dict, name): return state_dict def Embedding(num_embeddings, embedding_dim, padding_idx): m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) nn.init.normal_(m.weight, mean=0, std=embedding_dim**-0.5) nn.init.constant_(m.weight[padding_idx], 0) return m def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.0) return m