Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import io | |
import json | |
import os | |
import random | |
import tempfile | |
from multiprocessing import Manager, Pool, cpu_count | |
import cv2 | |
import imageio | |
import numpy as np | |
from decord import VideoReader | |
from PIL import Image | |
def get_frame_indices(num_frames, vlen, sample='rand', fix_start=None, input_fps=1, max_num_frames=-1): | |
if sample in ["rand", "middle"]: # uniform sampling | |
acc_samples = min(num_frames, vlen) | |
# split the video into `acc_samples` intervals, and sample from each interval. | |
intervals = np.linspace( | |
start=0, stop=vlen, num=acc_samples + 1).astype(int) | |
ranges = [] | |
for idx, interv in enumerate(intervals[:-1]): | |
ranges.append((interv, intervals[idx + 1] - 1)) | |
if sample == 'rand': | |
try: | |
frame_indices = [random.choice( | |
range(x[0], x[1])) for x in ranges] | |
except Exception: | |
frame_indices = np.random.permutation(vlen)[:acc_samples] | |
frame_indices.sort() | |
frame_indices = list(frame_indices) | |
elif fix_start is not None: | |
frame_indices = [x[0] + fix_start for x in ranges] | |
elif sample == 'middle': | |
frame_indices = [(x[0] + x[1]) // 2 for x in ranges] | |
else: | |
raise NotImplementedError | |
if len(frame_indices) < num_frames: # padded with last frame | |
padded_frame_indices = [frame_indices[-1]] * num_frames | |
padded_frame_indices[:len(frame_indices)] = frame_indices | |
frame_indices = padded_frame_indices | |
elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps | |
output_fps = float(sample[3:]) | |
duration = float(vlen) / input_fps | |
# gap between frames, this is also the clip length each frame represents | |
delta = 1 / output_fps | |
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta) | |
frame_indices = np.around(frame_seconds * input_fps).astype(int) | |
frame_indices = [e for e in frame_indices if e < vlen] | |
if max_num_frames > 0 and len(frame_indices) > max_num_frames: | |
frame_indices = frame_indices[:max_num_frames] | |
else: | |
raise ValueError | |
return frame_indices | |
def get_index(num_frames, bound, fps, max_frame, first_idx=0): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / num_frames | |
frame_indices = np.array([ | |
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
for idx in range(num_frames) | |
]) | |
return frame_indices | |
def read_frames_gif( | |
video_path, num_frames, sample='rand', fix_start=None, | |
max_num_frames=-1, client=None, clip=None, | |
): | |
if video_path.startswith('s3') or video_path.startswith('p2'): | |
video_bytes = client.get(video_path) | |
gif = imageio.get_reader(io.BytesIO(video_bytes)) | |
else: | |
gif = imageio.get_reader(video_path) | |
vlen = len(gif) | |
frame_indices = get_frame_indices( | |
num_frames, vlen, sample=sample, fix_start=fix_start, | |
max_num_frames=max_num_frames | |
) | |
frames = [] | |
reference_size = None | |
for index, frame in enumerate(gif): | |
# for index in frame_idxs: | |
if index in frame_indices: | |
if frame.ndim == 2: | |
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB) | |
elif frame.shape[2] == 4: | |
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
if reference_size is None: | |
reference_size = (frame.shape[1], frame.shape[0]) | |
frame = cv2.resize(frame, reference_size, | |
interpolation=cv2.INTER_LINEAR) | |
frames.append(frame) | |
frames = np.stack(frames, axis=0) # .float() / 255 | |
return frames | |
def read_frames_decord( | |
video_path, num_frames, sample='rand', fix_start=None, | |
max_num_frames=-1, client=None, clip=None | |
): | |
if video_path.startswith('s3') or video_path.startswith('p2') or video_path.startswith('p_hdd') or video_path.startswith('cluster1'): | |
video_bytes = client.get(video_path) | |
video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1) | |
else: | |
video_reader = VideoReader(video_path, num_threads=1) | |
vlen = len(video_reader) | |
fps = video_reader.get_avg_fps() | |
duration = vlen / float(fps) | |
if clip: | |
vlen = int(duration * fps) | |
frame_indices = get_index(num_frames, clip, fps, vlen) | |
else: | |
frame_indices = get_frame_indices( | |
num_frames, vlen, sample=sample, fix_start=fix_start, | |
input_fps=fps, max_num_frames=max_num_frames | |
) | |
# if clip: | |
# frame_indices = [f + start_index for f in frame_indices] | |
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C) | |
return frames | |
def read_diff_frames_decord( | |
video_path, clip, client=None | |
): | |
if video_path.startswith('s3') or video_path.startswith('p2') or video_path.startswith('p_hdd') or video_path.startswith('cluster1') or video_path.startswith('s_hdd'): | |
video_bytes = client.get(video_path) | |
video_reader = VideoReader(io.BytesIO(video_bytes), num_threads=1) | |
else: | |
video_reader = VideoReader(video_path, num_threads=1) | |
vlen = len(video_reader) | |
fps = video_reader.get_avg_fps() | |
start_idx = round(clip[0]*fps) | |
end_idx = min(round(clip[1]*fps), vlen) | |
frame_indices = [start_idx, end_idx] | |
frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C) | |
return frames | |