LennyS17 commited on
Commit
4cfda0c
·
verified ·
1 Parent(s): 4130f02

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +199 -199
app.py CHANGED
@@ -1,199 +1,199 @@
1
- import tensorflow as tf
2
- from keras import models
3
- import numpy as np
4
- import gradio as gr
5
- import cv2
6
-
7
- # Load the model
8
- try:
9
- generator = models.load_model("generator.keras")
10
- print("Model loaded successfully!")
11
- except Exception as e:
12
- print("Error loading model:", e)
13
-
14
-
15
- # Function to preprocess the image (resize, normalize)
16
- def preprocess_image(img):
17
- img = cv2.resize(img, (256, 256))
18
-
19
- # Convert L to range [-1, 1]
20
- img = img.astype("float32")
21
- img = (img / 127.5) - 1
22
-
23
- # Convert to tensor
24
- img = tf.convert_to_tensor(img, dtype=tf.float32)
25
-
26
- img = tf.expand_dims(img, axis=-1) # Add image dimension
27
- img = tf.expand_dims(img, axis=0) # Add batch dimension
28
-
29
- return img
30
-
31
-
32
- # Function to postprocess the image (denormalize)
33
- def postprocess_image(img):
34
- img = cv2.cvtColor(((img + 1) * 127.5).numpy().astype(np.uint8), cv2.COLOR_LAB2RGB)
35
- return np.uint8(np.clip(img, 0, 255))
36
-
37
-
38
- # Function to adjust brightness
39
- def adjust_brightness(img, brightness=0.0):
40
- # Apply brightness adjustment
41
- img = cv2.convertScaleAbs(img, beta=int(brightness * 127.0 / 4.0))
42
- return np.uint8(np.clip(img, 0, 255))
43
-
44
-
45
- # Function to adjust contrast
46
- def adjust_contrast(img, contrast=0.0):
47
- # Apply contrast adjustment
48
- img = cv2.convertScaleAbs(img, alpha=(contrast * 0.75 + 1.0))
49
- return np.uint8(np.clip(img, 0, 255))
50
-
51
-
52
- # Function to adjust hue
53
- def adjust_hue(img, hue_shift=0.0):
54
- # Convert the image to HSV
55
- hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
56
-
57
- # Adjust the hue channel (value is between 0 and 179 in OpenCV's HSV)
58
- hsv_img[:, :, 0] = (
59
- hsv_img[:, :, 0] + hue_shift * 90
60
- ) % 180 # Hue is wrapped in OpenCV HSV format
61
-
62
- # Convert back to BGR
63
- img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
64
-
65
- return np.uint8(np.clip(img, 0, 255))
66
-
67
-
68
- def adjust_saturation(img, saturation_factor=0.0):
69
- # Convert the image to HSV
70
- hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
71
-
72
- # Adjust the saturation channel (index 1 in HSV)
73
- hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1] * (saturation_factor + 1.0), 0, 255)
74
-
75
- # Convert back to BGR
76
- img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
77
-
78
- return np.uint8(np.clip(img, 0, 255))
79
-
80
-
81
- # Define the inference function
82
- def colorize_image(input_image):
83
- # Preprocess the image for the model
84
- preprocessed_image = preprocess_image(input_image)
85
-
86
- # Predict using the model
87
- output_ab = generator.predict(preprocessed_image)
88
- output = tf.concat([preprocessed_image[0], output_ab[0]], axis=-1)
89
-
90
- # Postprocess the output
91
- output_image = postprocess_image(output)
92
-
93
- return output_image
94
-
95
-
96
- # Function to colorize and store the result for further manipulation
97
- def colorize_and_store(img):
98
- # Colorize the image
99
- colorized_image = colorize_image(img)
100
-
101
- # Return the colorized image for further manipulation (no model call)
102
- return colorized_image, colorized_image
103
-
104
-
105
- def make_grayscale_256(img):
106
- img = cv2.resize(img, (256, 256))
107
- # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
108
-
109
- return img
110
-
111
-
112
- css = """
113
- h1 {
114
- text-align: center;
115
- display:block;
116
- font-size:5rem;
117
- }
118
- p {
119
- text-align: center;
120
- display:block;
121
- font-size:2rem;
122
- }
123
- #input-image img {
124
- filter: grayscale(1);
125
- }
126
- """
127
-
128
- # Gradio Interface
129
- with gr.Blocks(css=css) as demo:
130
- demo.title = "Portrait Colorizer"
131
- # Add a title
132
- gr.Markdown("# Portrait Colorizer")
133
- gr.Markdown(
134
- "Upload a grayscale image to colorize it and fine-tune the output using the sliders below."
135
- )
136
-
137
- with gr.Row():
138
- input_image = gr.Image(
139
- type="numpy",
140
- label="Grayscale Image",
141
- image_mode="L",
142
- height=256,
143
- width=256,
144
- elem_id="input-image",
145
- )
146
- output_image = gr.Image(
147
- type="numpy",
148
- label="Colorized Image",
149
- image_mode="RGB",
150
- height=256,
151
- width=256,
152
- )
153
- process_button = gr.Button("Colorize")
154
- bright_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Brightness")
155
- cont_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Contrast")
156
- sat_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Saturation")
157
- hue_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Hue")
158
-
159
- # Initially colorize and display the image when it is uploaded
160
- colorized_image = gr.State()
161
-
162
- # Button click triggers processing
163
- process_button.click(
164
- fn=colorize_and_store,
165
- inputs=input_image,
166
- outputs=[colorized_image, output_image],
167
- )
168
-
169
- # Apply hue adjustment to the stored colorized image (no re-generation)
170
- bright_slider.change(
171
- fn=adjust_brightness,
172
- inputs=[colorized_image, bright_slider],
173
- outputs=output_image, # Update output image
174
- )
175
-
176
- # Apply hue adjustment to the stored colorized image (no re-generation)
177
- cont_slider.change(
178
- fn=adjust_contrast,
179
- inputs=[colorized_image, cont_slider],
180
- outputs=output_image, # Update output image
181
- )
182
-
183
- # Apply hue adjustment to the stored colorized image (no re-generation)
184
- hue_slider.change(
185
- fn=adjust_hue,
186
- inputs=[colorized_image, hue_slider],
187
- outputs=output_image, # Update output image
188
- )
189
-
190
- # Apply saturation adjustment to the stored colorized image (no re-generation)
191
- sat_slider.change(
192
- fn=adjust_saturation,
193
- inputs=[colorized_image, sat_slider],
194
- outputs=output_image, # Update output image
195
- )
196
-
197
- # Launch the app
198
- if __name__ == "__main__":
199
- demo.launch()
 
1
+ import tensorflow as tf
2
+ from keras import models
3
+ import numpy as np
4
+ import gradio as gr
5
+ import cv2
6
+
7
+ # Load the model
8
+ try:
9
+ generator = models.load_model("generator.keras")
10
+ print("Model loaded successfully!")
11
+ except Exception as e:
12
+ print("Error loading model:", e)
13
+
14
+
15
+ # Function to preprocess the image (resize, normalize)
16
+ def preprocess_image(img):
17
+ img = cv2.resize(img, (256, 256))
18
+
19
+ # Convert L to range [-1, 1]
20
+ img = img.astype("float32")
21
+ img = (img / 127.5) - 1
22
+
23
+ # Convert to tensor
24
+ img = tf.convert_to_tensor(img, dtype=tf.float32)
25
+
26
+ img = tf.expand_dims(img, axis=-1) # Add image dimension
27
+ img = tf.expand_dims(img, axis=0) # Add batch dimension
28
+
29
+ return img
30
+
31
+
32
+ # Function to postprocess the image (denormalize)
33
+ def postprocess_image(img):
34
+ img = cv2.cvtColor(((img + 1) * 127.5).numpy().astype(np.uint8), cv2.COLOR_LAB2RGB)
35
+ return np.uint8(np.clip(img, 0, 255))
36
+
37
+
38
+ # Function to adjust brightness
39
+ def adjust_brightness(img, brightness=0.0):
40
+ # Apply brightness adjustment
41
+ img = cv2.convertScaleAbs(img, beta=int(brightness * 127.0 / 4.0))
42
+ return np.uint8(np.clip(img, 0, 255))
43
+
44
+
45
+ # Function to adjust contrast
46
+ def adjust_contrast(img, contrast=0.0):
47
+ # Apply contrast adjustment
48
+ img = cv2.convertScaleAbs(img, alpha=(contrast * 0.75 + 1.0))
49
+ return np.uint8(np.clip(img, 0, 255))
50
+
51
+
52
+ # Function to adjust hue
53
+ def adjust_hue(img, hue_shift=0.0):
54
+ # Convert the image to HSV
55
+ hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
56
+
57
+ # Adjust the hue channel (value is between 0 and 179 in OpenCV's HSV)
58
+ hsv_img[:, :, 0] = (
59
+ hsv_img[:, :, 0] + hue_shift * 90
60
+ ) % 180 # Hue is wrapped in OpenCV HSV format
61
+
62
+ # Convert back to BGR
63
+ img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
64
+
65
+ return np.uint8(np.clip(img, 0, 255))
66
+
67
+
68
+ def adjust_saturation(img, saturation_factor=0.0):
69
+ # Convert the image to HSV
70
+ hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
71
+
72
+ # Adjust the saturation channel (index 1 in HSV)
73
+ hsv_img[:, :, 1] = np.clip(hsv_img[:, :, 1] * (saturation_factor + 1.0), 0, 255)
74
+
75
+ # Convert back to BGR
76
+ img = cv2.cvtColor(hsv_img, cv2.COLOR_HSV2BGR)
77
+
78
+ return np.uint8(np.clip(img, 0, 255))
79
+
80
+
81
+ # Define the inference function
82
+ def colorize_image(input_image):
83
+ # Preprocess the image for the model
84
+ preprocessed_image = preprocess_image(input_image)
85
+
86
+ # Predict using the model
87
+ output_ab = generator.predict(preprocessed_image)
88
+ output = tf.concat([preprocessed_image[0], output_ab[0]], axis=-1)
89
+
90
+ # Postprocess the output
91
+ output_image = postprocess_image(output)
92
+
93
+ return output_image
94
+
95
+
96
+ # Function to colorize and store the result for further manipulation
97
+ def colorize_and_store(img):
98
+ # Colorize the image
99
+ colorized_image = colorize_image(img)
100
+
101
+ # Return the colorized image for further manipulation (no model call)
102
+ return colorized_image, colorized_image
103
+
104
+
105
+ def make_grayscale_256(img):
106
+ img = cv2.resize(img, (256, 256))
107
+ # img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
108
+
109
+ return img
110
+
111
+
112
+ css = """
113
+ h1 {
114
+ text-align: center;
115
+ display:block;
116
+ font-size:4rem;
117
+ }
118
+ p {
119
+ text-align: center;
120
+ display:block;
121
+ font-size:2rem;
122
+ }
123
+ #input-image img {
124
+ filter: grayscale(1);
125
+ }
126
+ """
127
+
128
+ # Gradio Interface
129
+ with gr.Blocks(css=css) as demo:
130
+ demo.title = "Portrait Colorizer"
131
+ # Add a title
132
+ gr.Markdown("# Portrait Colorizer")
133
+ gr.Markdown(
134
+ "Upload a grayscale image to colorize it and fine-tune the output using the sliders below."
135
+ )
136
+
137
+ with gr.Row():
138
+ input_image = gr.Image(
139
+ type="numpy",
140
+ label="Grayscale Image",
141
+ image_mode="L",
142
+ height=256,
143
+ width=256,
144
+ elem_id="input-image",
145
+ )
146
+ output_image = gr.Image(
147
+ type="numpy",
148
+ label="Colorized Image",
149
+ image_mode="RGB",
150
+ height=256,
151
+ width=256,
152
+ )
153
+ process_button = gr.Button("Colorize")
154
+ bright_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Brightness")
155
+ cont_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Contrast")
156
+ sat_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Saturation")
157
+ hue_slider = gr.Slider(-1.0, 1.0, value=0.0, label="Hue")
158
+
159
+ # Initially colorize and display the image when it is uploaded
160
+ colorized_image = gr.State()
161
+
162
+ # Button click triggers processing
163
+ process_button.click(
164
+ fn=colorize_and_store,
165
+ inputs=input_image,
166
+ outputs=[colorized_image, output_image],
167
+ )
168
+
169
+ # Apply hue adjustment to the stored colorized image (no re-generation)
170
+ bright_slider.change(
171
+ fn=adjust_brightness,
172
+ inputs=[colorized_image, bright_slider],
173
+ outputs=output_image, # Update output image
174
+ )
175
+
176
+ # Apply hue adjustment to the stored colorized image (no re-generation)
177
+ cont_slider.change(
178
+ fn=adjust_contrast,
179
+ inputs=[colorized_image, cont_slider],
180
+ outputs=output_image, # Update output image
181
+ )
182
+
183
+ # Apply hue adjustment to the stored colorized image (no re-generation)
184
+ hue_slider.change(
185
+ fn=adjust_hue,
186
+ inputs=[colorized_image, hue_slider],
187
+ outputs=output_image, # Update output image
188
+ )
189
+
190
+ # Apply saturation adjustment to the stored colorized image (no re-generation)
191
+ sat_slider.change(
192
+ fn=adjust_saturation,
193
+ inputs=[colorized_image, sat_slider],
194
+ outputs=output_image, # Update output image
195
+ )
196
+
197
+ # Launch the app
198
+ if __name__ == "__main__":
199
+ demo.launch()