Spaces:
Sleeping
Sleeping
File size: 16,968 Bytes
d2ec756 31eadc7 d2ec756 0bb1ad3 e581117 0bb1ad3 d2ec756 08bc7ab c9793cd 16a2246 e1d92e1 d2ec756 e581117 0bb1ad3 d2ec756 7a286ff 0bb1ad3 d2ec756 d2bb714 08bc7ab d2ec756 d2bb714 d2ec756 d7ccd1d d2ec756 d2bb714 d2ec756 e581117 d2ec756 d2bb714 d2ec756 c188d2e d2ec756 c9793cd 16a2246 c9793cd d2ec756 d2bb714 08bc7ab d2ec756 d7ccd1d d2ec756 e581117 d2ec756 d2bb714 d2ec756 c188d2e d2ec756 c9793cd 16a2246 c9793cd d2ec756 08bc7ab d2ec756 e581117 d2ec756 d7ccd1d d2bb714 d7ccd1d d2bb714 d2ec756 d7ccd1d d2ec756 d7ccd1d d2ec756 d7ccd1d d2ec756 d7ccd1d d2ec756 d7ccd1d d2ec756 d7ccd1d 08bc7ab d2ec756 08bc7ab d2ec756 d2bb714 cf269e0 d2bb714 d2ec756 d7ccd1d d2ec756 d2bb714 d2ec756 d7ccd1d d2ec756 d7ccd1d d2ec756 cf269e0 d2bb714 cf269e0 d2bb714 cf269e0 d2bb714 d2ec756 cf269e0 d2ec756 d2bb714 cf269e0 d2bb714 d2ec756 0bb1ad3 d2ec756 0bb1ad3 c9793cd d2ec756 0bb1ad3 c9793cd d2ec756 c9793cd d2ec756 c9793cd 16a2246 d2ec756 0bb1ad3 d7ccd1d c9793cd 0bb1ad3 d7ccd1d 0bb1ad3 d2bb714 d7ccd1d d2bb714 0bb1ad3 c9793cd d2ec756 16a2246 08bc7ab 16a2246 08bc7ab 16a2246 e581117 d2ec756 0bb1ad3 e581117 16a2246 c7d8778 16a2246 c7d8778 98baa22 c7d8778 d7ccd1d 16a2246 d2ec756 c7d8778 d2ec756 d7ccd1d 16a2246 d2ec756 16a2246 0bb1ad3 c9793cd 0bb1ad3 c9793cd 0bb1ad3 c9793cd 0bb1ad3 c9793cd 16a2246 e581117 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 0bb1ad3 d2ec756 d7ccd1d 08bc7ab 16a2246 d7ccd1d d2ec756 d2bb714 d2ec756 c9793cd d2ec756 d7ccd1d d2ec756 c9793cd 16a2246 c188d2e 16a2246 c188d2e c9793cd d7ccd1d c9793cd e1d92e1 c9793cd 0bb1ad3 c9793cd d2ec756 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
import time
import shutil
import numpy as np
import gradio as gr
import plotly.graph_objs as go
glob_k = 0.0025
glob_a = -2.0
glob_b = 4.0
glob_c = 7.5
n_x, n_t = 10, 10
def clear_npz():
current_directory = os.getcwd() # Get the current working directory
for filename in os.listdir(current_directory):
if filename.endswith(".npz"): # Check if the file ends with .npz
file_path = os.path.join(current_directory, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove the file or symbolic link
else:
print(f"Skipping {file_path}, not a file or symbolic link.")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def complex_heat_eq_solution(x, t, k, a, b, c):
global glob_k, glob_a, glob_b, glob_c
glob_k, glob_a, glob_b, glob_c = k, a, b, c
return (
np.exp(-glob_k * (glob_a * np.pi) ** 2 * t) * np.cos(glob_a * np.pi * x)
+ np.exp(-glob_k * (glob_b * np.pi) ** 2 * t) * np.sin(glob_b * np.pi * x)
+ np.exp(-glob_k * (glob_c * np.pi) ** 2 * t) * np.sin(glob_c * np.pi * x)
)
def plot_heat_equation(m, approx_type, quality, rand_or_det):
global glob_k, glob_a, glob_b, glob_c, n_x, n_t
# Plot with more points than it was calculated
new_nx = 1 * n_x
new_nt = 1 * n_t
try:
loaded_values = np.load(
f"{approx_type}_m{m}_{str.lower(quality)}_{str.lower(rand_or_det)}.npz"
)
except:
raise gr.Error(f"First train the coefficients for {approx_type} and m = {m}")
alpha = loaded_values["alpha"]
Phi = loaded_values["Phi"]
# Create grids for x and t
x = np.linspace(0, 1, new_nx) # Spatial grid
t = np.linspace(0, 5, new_nt) # Temporal grid
X, T = np.meshgrid(x, t)
# Compute the real solution over the grid
U_real = complex_heat_eq_solution(X, T, glob_k, glob_a, glob_b, glob_c)
# Compute the selected approximation
# Compute the approximations as a single matrix multiplication
Phi_reshaped = Phi.reshape(n_t, n_x, -1)
# The result will be of shape (n_t, n_x), as U_approx should match U_real's shape
U_approx = np.einsum("ijk,k->ij", Phi_reshaped, alpha)
# Create the 3D plot with Plotly
traces = []
# Real solution surface with a distinct color (e.g., 'Viridis')
traces.append(
go.Surface(
z=U_real,
x=X,
y=T,
colorscale="Blues",
showscale=False,
name="Real Solution",
showlegend=True,
)
)
# Approximation surface with a distinct color (e.g., 'Plasma')
traces.append(
go.Surface(
z=U_approx,
x=X,
y=T,
colorscale="Reds",
reversescale=True,
showscale=False,
name=f"{approx_type} Approximation",
showlegend=True,
)
)
# Layout for the Plotly plot without controls
layout = go.Layout(
scene=dict(
camera=dict(
eye=dict(x=0, y=-2, z=0), # Front view
),
xaxis_title="x",
yaxis_title="t",
zaxis_title="u",
),
margin=dict(l=0, r=0, t=0, b=0), # Reduce margins
)
# Create the figure
fig = go.Figure(data=traces, layout=layout)
fig.update_layout(
modebar_remove=[
"pan",
"resetCameraLastSave",
"hoverClosest3d",
"hoverCompareCartesian",
"zoomIn",
"zoomOut",
"select2d",
"lasso2d",
"zoomIn2d",
"zoomOut2d",
"sendDataToCloud",
"zoom3d",
"orbitRotation",
"tableRotation",
"toImage",
"resetCameraDefault3d",
],
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.01),
)
return fig
def plot_errors(m, approx_type, quality, rand_or_det):
global n_x, n_t
try:
loaded_values = np.load(
f"{approx_type}_m{m}_{str.lower(quality)}_{str.lower(rand_or_det)}.npz"
)
except:
raise gr.Error(f"First train the coefficients for {approx_type} and m = {m}")
alpha = loaded_values["alpha"]
Phi = loaded_values["Phi"]
# Create grids for x and t
x = np.linspace(0, 1, n_x) # Spatial grid
t = np.linspace(0, 5, n_t) # Temporal grid
X, T = np.meshgrid(x, t)
# Compute the real solution over the grid
U_real = complex_heat_eq_solution(X, T, glob_k, glob_a, glob_b, glob_c)
# Compute the selected approximation
U_approx = np.zeros_like(U_real)
for i, t_val in enumerate(t):
Phi_at_t = Phi[i * n_x : (i + 1) * n_x]
U_approx[i, :] = np.dot(Phi_at_t, alpha)
U_err = abs(U_approx - U_real)
# Create the 3D plot with Plotly
traces = []
# Real solution surface with a distinct color (e.g., 'Viridis')
traces.append(
go.Surface(
z=U_err,
x=X,
y=T,
colorscale="Viridis",
showscale=False,
name=f"Absolute Error",
showlegend=True,
)
)
# Layout for the Plotly plot without controls
layout = go.Layout(
scene=dict(
camera=dict(
eye=dict(x=0, y=-2, z=0), # Front view
),
xaxis_title="x",
yaxis_title="t",
zaxis_title="u",
),
margin=dict(l=0, r=0, t=0, b=0), # Reduce margins
)
# Create the figure
fig = go.Figure(data=traces, layout=layout)
fig.update_layout(
modebar_remove=[
"pan",
"resetCameraLastSave",
"hoverClosest3d",
"hoverCompareCartesian",
"zoomIn",
"zoomOut",
"select2d",
"lasso2d",
"zoomIn2d",
"zoomOut2d",
"sendDataToCloud",
"zoom3d",
"orbitRotation",
"tableRotation",
"toImage",
"resetCameraDefault3d",
],
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.01),
)
return fig
def generate_data():
global glob_k, glob_a, glob_b, glob_c, n_x, n_t
"""Generate training data."""
x = np.linspace(0, 1, n_x) # spatial points
t = np.linspace(0, 5, n_t) # temporal points
X, T = np.meshgrid(x, t)
a_train = np.c_[X.ravel(), T.ravel()] # shape (n_x * n_t, 2)
u_train = complex_heat_eq_solution(
a_train[:, 0], a_train[:, 1], glob_k, glob_a, glob_b, glob_c
) # shape (n_x * n_t,)
return a_train, u_train, x, t
def features(a, theta_j, m, method="SINE", k=1, eps=1e-8):
"""Compute random features with adjustable method width."""
if method == "SINE":
return np.sin(k * np.linalg.norm(a - theta_j, axis=-1) + eps)
elif method == "GFF":
return np.log(np.linalg.norm(a - theta_j, axis=-1) + eps) / (2 * np.pi)
else:
raise ValueError("Unsupported method type!")
def design_matrix(a, theta, method):
"""Construct design matrix."""
return np.array(
[features(a, theta_j, theta.shape[0], method) for theta_j in theta]
).T
def learn_coefficients(Phi, u):
"""Learn coefficients alpha via least squares."""
return np.linalg.lstsq(Phi, u, rcond=None)[0]
def approximate_solution(a, alpha, theta, method):
"""Compute the approximation."""
Phi = design_matrix(a, theta, method)
return Phi @ alpha
def train_coefficients(m, method, quality, rand_or_det):
global glob_k, glob_a, glob_b, glob_c, n_x, n_t
# Start time for training
start_time = time.time()
# Generate data
a_train, u_train, x, t = generate_data()
# Define random features
if rand_or_det == "Random":
theta = np.column_stack(
(
np.random.uniform(-1, 1, size=m), # First dimension: [-1, 1]
np.random.uniform(-5, 5, size=m), # Second dimension: [-5, 5]
)
)
else:
theta = np.column_stack(
(
np.linspace(-5, 5, m), # Linear spacing for x
np.linspace(-25, 25, m), # Linear spacing for y
)
)
# Construct design matrix and learn coefficients
Phi = design_matrix(a_train, theta, method)
alpha = learn_coefficients(Phi, u_train)
end_time = f"{time.time() - start_time:.2f}"
# Save values to the npz folder
np.savez(
f"{method}_m{m}_{str.lower(quality)}_{str.lower(rand_or_det)}.npz",
alpha=alpha,
method=method,
Phi=Phi,
theta=theta,
)
# Compute the average error
#
x = np.linspace(0, 1, n_x) # Spatial grid
t = np.linspace(0, 5, n_t) # Temporal grid
X, T = np.meshgrid(x, t)
# Compute the real solution over the grid
U_real = complex_heat_eq_solution(X, T, glob_k, glob_a, glob_b, glob_c)
# Compute the selected approximation
U_approx = np.zeros_like(U_real)
for i, t_val in enumerate(t):
Phi_at_t = Phi[i * n_x : (i + 1) * n_x]
U_approx[i, :] = np.dot(Phi_at_t, alpha)
# Compute average error
avg_err = np.mean(np.abs(U_real - U_approx))
return (
f"Training completed in {end_time} seconds. The average error is {avg_err}."
)
def plot_function(k, a, b, c):
global glob_k, glob_a, glob_b, glob_c
glob_k, glob_a, glob_b, glob_c = k, a, b, c
x = np.linspace(0, 1, 100)
t = np.linspace(0, 5, 500)
X, T = np.meshgrid(x, t) # Create the mesh grid
Z = complex_heat_eq_solution(X, T, glob_k, glob_a, glob_b, glob_c)
traces = []
traces.append(
go.Surface(
z=Z,
x=X,
y=T,
colorscale="Viridis",
showscale=False,
showlegend=False,
)
)
# Layout for the Plotly plot without controls
layout = go.Layout(
scene=dict(
camera=dict(
eye=dict(x=1.25, y=-1.75, z=0.3), # Front view
),
xaxis_title="x",
yaxis_title="t",
zaxis_title="u",
),
margin=dict(l=0, r=0, t=0, b=0), # Reduce margins
)
# Create the figure
fig = go.Figure(data=traces, layout=layout)
fig.update_layout(
modebar_remove=[
"pan",
"resetCameraLastSave",
"hoverClosest3d",
"hoverCompareCartesian",
"zoomIn",
"zoomOut",
"select2d",
"lasso2d",
"zoomIn2d",
"zoomOut2d",
"sendDataToCloud",
"zoom3d",
"orbitRotation",
"tableRotation",
"toImage",
"resetCameraDefault3d",
],
legend=dict(yanchor="bottom", y=0.01, xanchor="left", x=0.01),
)
return fig
def plot_all(m, method, quality, rand_or_det):
# Generate the plot content (replace this with your actual plot logic)
approx_fig = plot_heat_equation(
m, method, quality, rand_or_det
) # Replace with your function for approx_plot
error_fig = plot_errors(
m, method, quality, rand_or_det
) # Replace with your function for error_plot
# Return the figures and make the plots visible
return (
gr.update(visible=True, value=approx_fig),
gr.update(visible=True, value=error_fig),
)
def change_quality(quality):
global n_x, n_t
if quality == "Low":
n_x, n_t = 10, 10
elif quality == "Mid":
n_x, n_t = 20, 20
elif quality == "High":
n_x, n_t = 40, 40
# Gradio interface
def create_gradio_ui():
global glob_k, glob_a, glob_b, glob_c
markdown_content = r"""
## Goal function:
$$
\begin{alignat*}{5}
u(x, t)
\coloneqq &\exp(-\textcolor{magenta}{k}(&\textcolor{cyan}{a}&\pi)^2t)\sin(&\textcolor{cyan}{a}&\pi x) \\
+ &\exp(-\textcolor{magenta}{k}(&\textcolor{lime}{b}&\pi)^2t)\sin(&\textcolor{lime}{b}&\pi x) \\
+ &\exp(-\textcolor{magenta}{k}(&\textcolor{orange}{c}&\pi)^2t)\sin(&\textcolor{orange}{c}&\pi x)
\end{alignat*}
$$
Adjust the values for <span style='color: magenta;'>k</span>, <span style='color: cyan;'>a</span>, <span style='color: lime;'>b</span> and <span style='color: orange;'>c</span> with the sliders below.
Pressing "Train Coefficients" aims to solve
$$
\argmin_{\alpha\in\mathbb{R}^m}\|{\alpha\Phi-u}\|_2^2,
$$
where $\Phi$ contains the features depending on the method.
"""
# Get the initial available files
with gr.Blocks() as demo:
gr.Markdown("# Approximating a solution to the heat equation using RFM")
# Function parameter inputs
gr.Markdown(
markdown_content,
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
],
)
with gr.Row():
with gr.Column(min_width=500):
k_slider = gr.Slider(
minimum=0.0001, maximum=0.1, step=0.0001, value=glob_k, label="k"
)
a_slider = gr.Slider(
minimum=-10, maximum=10, step=0.1, value=glob_a, label="a"
)
b_slider = gr.Slider(
minimum=-10, maximum=10, step=0.1, value=glob_b, label="b"
)
c_slider = gr.Slider(
minimum=-10, maximum=10, step=0.1, value=glob_c, label="c"
)
with gr.Column(min_width=500):
plot_output = gr.Plot()
k_slider.change(
fn=plot_function,
inputs=[k_slider, a_slider, b_slider, c_slider],
outputs=[plot_output],
)
a_slider.change(
fn=plot_function,
inputs=[k_slider, a_slider, b_slider, c_slider],
outputs=[plot_output],
)
b_slider.change(
fn=plot_function,
inputs=[k_slider, a_slider, b_slider, c_slider],
outputs=[plot_output],
)
c_slider.change(
fn=plot_function,
inputs=[k_slider, a_slider, b_slider, c_slider],
outputs=[plot_output],
)
with gr.Column():
with gr.Row():
# method selection and slider for m
quality_dropdown = gr.Dropdown(
label="Choose Quality", choices=["Low", "Mid", "High"], value="Low"
)
quality_dropdown.change(
fn=change_quality, inputs=quality_dropdown, outputs=None
)
method_dropdown = gr.Dropdown(
label="Choose Method", choices=["SINE", "GFF"], value="SINE"
)
m_slider = gr.Dropdown(
label="Number of Random Features (m)",
choices=[50, 250, 1000, 5000, 10000, 25000],
value=1000,
)
rand_det_dropdown = gr.Dropdown(
label="Choose Random / Deterministic",
choices=["Deterministic", "Random"],
value="Deterministic",
)
# Output to show status
output = gr.Textbox(label="Status", interactive=False)
with gr.Column():
# Button to train coefficients
train_button = gr.Button("Train Coefficients")
# Function to trigger training and update dropdown
train_button.click(
fn=train_coefficients,
inputs=[
m_slider,
method_dropdown,
quality_dropdown,
rand_det_dropdown,
],
outputs=output,
)
approx_button = gr.Button("Plot Approximation")
with gr.Row():
with gr.Column(min_width=500):
approx_plot = gr.Plot(visible=False)
with gr.Column(min_width=500):
error_plot = gr.Plot(visible=False)
approx_button.click(
fn=plot_all,
inputs=[m_slider, method_dropdown, quality_dropdown, rand_det_dropdown],
outputs=[approx_plot, error_plot],
)
demo.load(fn=clear_npz, inputs=None, outputs=None)
demo.load(
fn=plot_function,
inputs=[k_slider, a_slider, b_slider, c_slider],
outputs=[plot_output],
)
return demo
# Launch Gradio app
if __name__ == "__main__":
interface = create_gradio_ui()
interface.launch(share=False)
|