MirakramAghalarov's picture
Productin Commit
a76b907
raw
history blame
7.15 kB
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, Tasks, Groups
@dataclass
class EvalResult:
eval_name: str # org_model_date (uid)
full_model: str # org/model (path on hub)
org: str
model: str
results: dict
date: str = "" # submission date of request file
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Get model and org
org_and_model = config.get("model_name", None)
org_and_model = org_and_model.split("/", 1)
org = org_and_model[0]
model = org_and_model[1]
date = config.get("submitted_time", None)
result_key = f"{org}_{model}_{date}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
date=date
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.model_submission_date.name: self.date,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.average.name: average,
}
for task in Tasks:
data_dict[task.col_name] = self.results[task.benchmark]
return data_dict
@dataclass
class EvalResultGroup:
eval_name: str # org_model_date (uid)
full_model: str # org/model (path on hub)
org: str
model: str
results: dict
date: str = "" # submission date of request file
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Get model and org
org_and_model = config.get("model_name", None)
org_and_model = org_and_model.split("/", 1)
org = org_and_model[0]
model = org_and_model[1]
date = config.get("submitted_time", None)
result_key = f"{org}_{model}_{date}"
full_model = "/".join(org_and_model)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Groups:
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
date=date
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Groups)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.model_submission_date.name: self.date,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.dummy.name: self.full_model,
AutoEvalColumn.average.name: average,
}
for task in Groups:
data_dict[task.col_name] = self.results[task.benchmark]
return data_dict
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
# Store results of same eval together
eval_name = eval_result.eval_name
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
def get_group_eval_results(results_path: str) -> list[EvalResultGroup]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResultGroup.init_from_json_file(model_result_filepath)
# Store results of same eval together
eval_name = eval_result.eval_name
eval_results[eval_name] = eval_result
results = []
print(eval_results)
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
print("key error")
continue
return results