|
from dataclasses import dataclass, make_dataclass |
|
|
|
from src.display.about import create_task_list |
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
Tasks, Groups = create_task_list() |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["model_submission_date", ColumnContent, ColumnContent("Submission Date", "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) |
|
|
|
|
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.benchmark, ColumnContent, ColumnContent(task.col_name, "number", True)]) |
|
|
|
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) |
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
submitted_time = ColumnContent("submitted_time", "str", True) |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.col_name for t in Tasks] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto_eval_group_dict = [] |
|
|
|
auto_eval_group_dict.append(["model_submission_date", ColumnContent, ColumnContent("Submission Date", "str", True, never_hidden=True)]) |
|
auto_eval_group_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) |
|
|
|
auto_eval_group_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]) |
|
|
|
|
|
for task in Groups: |
|
auto_eval_group_dict.append([task.benchmark, ColumnContent, ColumnContent(task.col_name, "number", True)]) |
|
|
|
auto_eval_group_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)]) |
|
|
|
|
|
AutoEvalColumnGroup = make_dataclass("AutoEvalColumnGroup", auto_eval_group_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumnGroup: |
|
model = ColumnContent("model", "markdown", True) |
|
submitted_time = ColumnContent("submitted_time", "str", True) |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
COLS_GROUP = [c.name for c in fields(AutoEvalColumnGroup) if not c.hidden] |
|
TYPES_GROUP = [c.type for c in fields(AutoEvalColumnGroup) if not c.hidden] |
|
|
|
EVAL_COLS_GROUP = [c.name for c in fields(EvalQueueColumnGroup)] |
|
EVAL_TYPES_GROUP = [c.type for c in fields(EvalQueueColumnGroup)] |
|
|
|
BENCHMARK_COLS_GROUP = [t.col_name for t in Groups] |