import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer from langchain.llms.base import LLM from langchain.memory import ConversationBufferMemory from langchain.chains import LLMChain, ConversationChain from langchain.prompts import PromptTemplate, ChatPromptTemplate @spaces.GPU def initialize_model_and_tokenizer(model_name="KvrParaskevi/Llama-2-7b-Hotel-Booking-Model"): model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) return model, tokenizer model, tokenizer = initialize_model_and_tokenizer() class CustomLLM(LLM): def _call(self, prompt, stop=None, run_manager=None) -> str: inputs = tokenizer(prompt, return_tensors="pt") result = model.generate(input_ids=inputs.input_ids, max_new_tokens=20) result = tokenizer.decode(result[0]) return result @property def _llm_type(self) -> str: return "custom" llm = CustomLLM() template = """<> You are an AI having conversation with a human. Below is an instruction that describes a task. Write a response that appropriately completes the request. Reply with the most helpful and logic answer. During the conversation you need to ask the user the following questions to complete the hotel booking task. 1) Where would you like to stay and when? 2) How many people are staying in the room? 3) Do you prefer any ammenities like breakfast included or gym? 4) What is your name, your email address and phone number? Make sure you receive a logical answer from the user from every question to complete the hotel booking process. <> Previous conversation: {history} Human: {input} AI:""" prompt = PromptTemplate(template=template, input_variables=["history", "input"]) memory = ConversationBufferMemory(memory_key="history", llm = llm, prompt = prompt) llm_chain = ConversationChain(prompt=prompt, llm=llm, memory = memory) with gr.Blocks() as demo: chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.Button("Clear") #llm_chain, llm = init_chain(model, tokenizer) def user(user_message, history): return "", history + [[user_message, None]] @spaces.GPU def bot(history): print("Question: ", history[-1][0]) bot_message = llm_chain.invoke(input=history[-1][0]) print("Response: ", bot_message) history[-1][1] = "" history[-1][1] += bot_message return history msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot) clear.click(lambda: None, None, chatbot, queue=False) demo.queue() demo.launch()