Spaces:
Runtime error
Runtime error
KvrParaskevi
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -19,7 +19,7 @@ def load_pipeline():
|
|
19 |
pipe = pipeline("text-generation",
|
20 |
model= model,
|
21 |
tokenizer = tokenizer,
|
22 |
-
max_new_tokens =
|
23 |
top_k = 30,
|
24 |
early_stopping=True,
|
25 |
num_beams = 2,
|
@@ -37,8 +37,8 @@ def chat_interface(inputs):
|
|
37 |
chat_history_tuples.append((message[0], message[1]))
|
38 |
|
39 |
#result = llm_chain({"input": query, "history": chat_history_tuples})
|
40 |
-
result = llm_chain.predict(input = inputs)
|
41 |
-
return result
|
42 |
|
43 |
llm = load_pipeline()
|
44 |
chat_history = []
|
@@ -60,14 +60,14 @@ the following questions to complete the hotel booking task.
|
|
60 |
Make sure you receive a logical answer from the user from every question to complete the hotel
|
61 |
booking process.
|
62 |
<</SYS>>
|
63 |
-
|
64 |
{history}
|
65 |
Human: {input}
|
66 |
AI:"""
|
67 |
prompt = PromptTemplate(template=template, input_variables=["history", "input"])
|
68 |
|
69 |
memory = ConversationBufferMemory(memory_key="history", llm = llm)
|
70 |
-
llm_chain = ConversationChain(llm=llm, memory = memory)
|
71 |
|
72 |
with gr.Blocks() as demo:
|
73 |
#gr.Markdown("Hotel Booking Assistant Chat 🤗")
|
|
|
19 |
pipe = pipeline("text-generation",
|
20 |
model= model,
|
21 |
tokenizer = tokenizer,
|
22 |
+
max_new_tokens = 50,
|
23 |
top_k = 30,
|
24 |
early_stopping=True,
|
25 |
num_beams = 2,
|
|
|
37 |
chat_history_tuples.append((message[0], message[1]))
|
38 |
|
39 |
#result = llm_chain({"input": query, "history": chat_history_tuples})
|
40 |
+
result = llm_chain.predict(input = inputs, max_length = 50)
|
41 |
+
return result["response"]
|
42 |
|
43 |
llm = load_pipeline()
|
44 |
chat_history = []
|
|
|
60 |
Make sure you receive a logical answer from the user from every question to complete the hotel
|
61 |
booking process.
|
62 |
<</SYS>>
|
63 |
+
Current conversation:
|
64 |
{history}
|
65 |
Human: {input}
|
66 |
AI:"""
|
67 |
prompt = PromptTemplate(template=template, input_variables=["history", "input"])
|
68 |
|
69 |
memory = ConversationBufferMemory(memory_key="history", llm = llm)
|
70 |
+
llm_chain = ConversationChain(llm=llm, memory = memory, prompt= prompt)
|
71 |
|
72 |
with gr.Blocks() as demo:
|
73 |
#gr.Markdown("Hotel Booking Assistant Chat 🤗")
|