Spaces:
Runtime error
Runtime error
File size: 2,926 Bytes
93c9f45 b26efc5 540c3e4 1b9d0f6 8204ebb 540c3e4 5177ae4 1b9d0f6 a4697a1 1b9d0f6 a4697a1 1b9d0f6 0a0731c cdb4561 548127e cdb4561 1b9d0f6 cdb4561 1b9d0f6 0a0731c cdb4561 f3b0cae fa240df f1c8adb d95ff21 cdb4561 e767674 1b9d0f6 85a3c90 1b9d0f6 90d41bb 9e70b49 93c9f45 cdb4561 f1824de d535138 93c9f45 f1824de cdb4561 ecc901e cdb4561 f1824de 93c9f45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms.base import LLM
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain, ConversationChain
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.prompts import PromptTemplate, ChatPromptTemplate
@spaces.GPU
def initialize_model_and_tokenizer(model_name="KvrParaskevi/Llama-2-7b-Hotel-Booking-Model"):
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
@spaces.GPU
def load_pipeline():
model, tokenizer = initialize_model_and_tokenizer()
pipe = pipeline("text-generation",
model= model,
tokenizer = tokenizer,
max_new_tokens = 20,
top_k = 30,
early_stopping=True,
num_beams = 2,
temperature = 0.1,
repetition_penalty = 1.03)
llm = HuggingFacePipeline(pipeline = pipe)
return llm
@spaces.GPU
def chat_interface(inputs):
question = inputs
chat_history_tuples = []
for message in chat_history:
chat_history_tuples.append((message[0], message[1]))
#result = llm_chain({"input": query, "history": chat_history_tuples})
result = llm_chain.predict(input = inputs)
return result
llm = load_pipeline()
chat_history = []
template = """<<SYS>>
You are an AI having conversation with a human. Below is an instruction that describes a task.
Write a response that appropriately completes the request.
Reply with the most helpful and logic answer. During the conversation you need to ask the user
the following questions to complete the hotel booking task.
1) Where would you like to stay and when?
2) How many people are staying in the room?
3) Do you prefer any ammenities like breakfast included or gym?
4) What is your name, your email address and phone number?
Make sure you receive a logical answer from the user from every question to complete the hotel
booking process.
<</SYS>>
Previous conversation:
{history}
Human: {input}
AI:"""
prompt = PromptTemplate(template=template, input_variables=["history", "input"])
memory = ConversationBufferMemory(memory_key="history", llm = llm)
llm_chain = ConversationChain(prompt=prompt, llm=llm, memory = memory)
with gr.Blocks() as demo:
gr.Markdown("Hotel Booking Assistant Chat 🤗")
#chatbot = gr.Chatbot(label="Chat history")
#message = gr.Textbox(label="Ask me a question!")
#clear = gr.Button("Clear")
#llm_chain, llm = init_chain(model, tokenizer)
demo.chatbot_interface = gr.Interface(
fn=chat_interface,
inputs=[
gr.Textbox(lines=1, label="input")
],
outputs="text"
)
demo.launch()
|