Spaces:
Runtime error
Runtime error
File size: 2,374 Bytes
93c9f45 85a3c90 1b9d0f6 85a3c90 1b9d0f6 93c9f45 2d5d543 93c9f45 2d5d543 93c9f45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import gradio as gr
from transformers import AutoModelForCausalLLM, AutoTokenizer
from langchain.llms.base import LLM
from langchain import PromptTemplate, LLMChain
def initialize_model_and_tokenizer(model_name="KvrParaskevi/Llama-2-7b-Hotel-Booking-Model"):
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
model, tokenizer = initialize_model_and_tokenizer()
class CustomLLM(LLM):
def _call(self, prompt, stop=None, run_manager=None) -> str:
inputs = tokenizer(prompt, return_tensors="pt")
result = model.generate(input_ids=inputs.input_ids, max_new_tokens=20)
result = tokenizer.decode(result[0])
return result
@property
def _llm_type(self) -> str:
return "custom"
llm = CustomLLM()
template = """<<SYS>>
You are an AI having conversation with a human. Below is an instruction that describes a task.
Write a response that appropriately completes the request.
Reply with the most helpful and logic answer. During the conversation you need to ask the user
the following questions to complete the hotel booking task.
1) Where would you like to stay and when?
2) How many people are staying in the room?
3) Do you prefer any ammenities like breakfast included or gym?
4) What is your name, your email address and phone number?
Make sure you receive a logical answer from the user from every question to complete the hotel
booking process.
<</SYS>>
Previous conversation:
{history}
Human: {input}
AI:"""
prompt = PromptTemplate(template=template, input_variables=["history", "input"])
llm_chain = LLMChain(prompt=prompt, llm=llm)
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
llm_chain, llm = init_chain(model, tokenizer)
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(history):
print("Question: ", history[-1][0])
bot_message = llm_chain.run(question=history[-1][0])
print("Response: ", bot_message)
history[-1][1] = ""
history[-1][1] += bot_message
return history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch() |