import streamlit as st from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load the model and tokenizer from Hugging Face model_name = "KevSun/Engessay_grading_ML" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Streamlit app st.title("Automated Scoring App") st.write("Enter your English essay below to predict scores from multiple dimensions:") # Input text from user user_input = st.text_area("Your text here:") if st.button("Predict"): if user_input: # Tokenize input text inputs = tokenizer(user_input, return_tensors="pt") # Get predictions from the model with torch.no_grad(): outputs = model(**inputs) # Extract the predictions predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predictions = predictions[0].tolist() # Display the predictions labels = ["cohesion", "syntax", "vocabulary", "phraseology", "grammar", "conventions"] scaled_scores = 2.25 * predictions - 1.25 rounded_scores = [round(score * 2) / 2 for score in scaled_scores] # Round to nearest 0.5 #for item, score in zip(item_names, rounded_scores): # print(f"{item}: {score:.1f}") for label, score in zip(labels, rounded_scores): st.write(f"{label}: {score:.4f}") else: st.write("Please enter some text to get scores.")