Upload 8 files
Browse files- README.md +2 -2
- app.py +81 -18
- hfconstants.py +7 -0
- hfsearch.py +263 -68
- subtags.json +0 -0
- tags.json +0 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
+
title: Search HFπ€ Inference API warm models
|
3 |
+
emoji: π€π
|
4 |
colorFrom: indigo
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
app.py
CHANGED
@@ -1,36 +1,99 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from hfsearch import HFSearchResult, search, update_filter, update_df
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
with gr.Column():
|
7 |
search_result = gr.State(value=HFSearchResult())
|
8 |
-
with gr.
|
9 |
-
with gr.
|
10 |
-
infer_status = gr.Radio(label="Inference status", choices=["warm", "cold", "frozen", "all"], value="warm")
|
11 |
-
gated_status = gr.Radio(label="Gated status", choices=["gated", "non-gated", "all"], value="non-gated")
|
12 |
-
appr_status = gr.CheckboxGroup(label="Approval method", choices=["auto", "manual"], value=["auto", "manual"])
|
13 |
-
with gr.Accordion("Advanced", open=False):
|
14 |
with gr.Row(equal_height=True):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
with gr.Group():
|
22 |
with gr.Accordion("Filter", open=False):
|
23 |
-
|
24 |
with gr.Row(equal_height=True):
|
25 |
filter_item1 = gr.Dropdown(label="Filter item", choices=[""], value="", visible=False)
|
26 |
filter1 = gr.Dropdown(label="Filter", choices=[""], value="", allow_custom_value=True, visible=False)
|
27 |
filter_btn = gr.Button("Apply filter", variant="secondary", visible=False)
|
28 |
-
result_df = gr.DataFrame(label="Results", type="
|
29 |
|
30 |
-
run_button.click(search, [sort, sort_method,
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
.success(update_filter, [filter_item1, search_result], [filter_item1, filter1, filter_btn, search_result], queue=False)
|
32 |
-
gr.on(triggers=[
|
33 |
outputs=[result_df, search_result], trigger_mode="once", queue=False, show_api=False)
|
34 |
filter_item1.change(update_filter, [filter_item1, search_result], [filter_item1, filter1, filter_btn, search_result], queue=False, show_api=False)
|
|
|
|
|
|
|
35 |
|
36 |
demo.queue().launch()
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from hfsearch import (HFSearchResult, search, update_filter, update_df, get_labels, get_valid_labels,
|
4 |
+
get_tags, get_subtag_categories, update_subtag_items, update_tags, update_subtags,
|
5 |
+
DS_SIZE_CATEGORIES, SPACE_HARDWARES, SPACE_STAGES)
|
6 |
|
7 |
+
CSS = """
|
8 |
+
.title { align-items: center; text-align: center; }
|
9 |
+
.info { align-items: center; text-align: center; }
|
10 |
+
"""
|
11 |
+
|
12 |
+
with gr.Blocks(theme="NoCrypt/miku", fill_width=True, css=CSS) as demo:
|
13 |
+
gr.Markdown("# Search Hugging Faceπ€", elem_classes="title")
|
14 |
with gr.Column():
|
15 |
search_result = gr.State(value=HFSearchResult())
|
16 |
+
with gr.Tab("Normal Search"):
|
17 |
+
with gr.Group():
|
|
|
|
|
|
|
|
|
18 |
with gr.Row(equal_height=True):
|
19 |
+
repo_types = gr.CheckboxGroup(label="Repo type", choices=["model", "dataset", "space"], value=["model", "dataset", "space"])
|
20 |
+
with gr.Accordion("Advanced", open=False):
|
21 |
+
with gr.Row(equal_height=True):
|
22 |
+
filter_str = gr.Textbox(label="Filter", info="String(s) to filter repos", value="")
|
23 |
+
search_str = gr.Textbox(label="Search", info="A string that will be contained in the returned repo ids", placeholder="bert", value="", lines=1)
|
24 |
+
author = gr.Textbox(label="Author", info="The author (user or organization)", value="", lines=1)
|
25 |
+
with gr.Column():
|
26 |
+
tags = gr.Textbox(label="Tags", info="Tag(s) to filter repos", value="")
|
27 |
+
with gr.Accordion("Tag input assistance", open=False):
|
28 |
+
with gr.Row(equal_height=True):
|
29 |
+
tag_item = gr.Dropdown(label="Item", choices=get_tags(), value=get_tags()[0], allow_custom_value=True, scale=4)
|
30 |
+
tag_btn = gr.Button("Add", scale=1)
|
31 |
+
with gr.Row(equal_height=True):
|
32 |
+
subtag_cat = gr.Dropdown(label="Category", choices=get_subtag_categories(), value=get_subtag_categories()[0], scale=2)
|
33 |
+
subtag_item = gr.Dropdown(label="Item", choices=[""], value="", allow_custom_value=True, scale=2)
|
34 |
+
subtug_btn = gr.Button("Add", scale=1)
|
35 |
+
with gr.Column():
|
36 |
+
gated_status = gr.Radio(label="Gated status", choices=["gated", "non-gated", "all"], value="all")
|
37 |
+
appr_status = gr.CheckboxGroup(label="Approval method", choices=["auto", "manual"], value=["auto", "manual"])
|
38 |
+
with gr.Tab("for Models"):
|
39 |
+
with gr.Column():
|
40 |
+
infer_status = gr.Radio(label="Inference status", choices=["warm", "cold", "frozen", "all"], value="all")
|
41 |
+
gr.Markdown("[About the Inference API status (Warm, Cold, Frozen)](https://huggingface.co/docs/api-inference/supported-models)", elem_classes="info")
|
42 |
+
# with gr.Row(equal_height=True):
|
43 |
+
# model_task = gr.Textbox(label="Task", info="String(s) of tasks models were designed for", placeholder="fill-mask", value="")
|
44 |
+
# trained_dataset = gr.Textbox(label="Trained dataset", info="Trained dataset for a model", value="")
|
45 |
+
with gr.Tab("for Datasets"):
|
46 |
+
size_categories = gr.CheckboxGroup(label="Size categories", info="The size of the dataset", choices=DS_SIZE_CATEGORIES, value=[])
|
47 |
+
# task_categories = gr.Textbox(label="Task categories", info="Identify datasets by the designed task", value="")
|
48 |
+
# task_ids = gr.Textbox(label="Task IDs", info="Identify datasets by the specific task", value="")
|
49 |
+
# language_creators = gr.Textbox(label="Language creators", info="Identify datasets with how the data was curated", value="")
|
50 |
+
# language = gr.Textbox(label="Language", info="String(s) representing two-character language to filter datasets by", value="")
|
51 |
+
# multilinguality = gr.Textbox(label="Multilinguality", info="String(s) representing a filter for datasets that contain multiple languages", value="")
|
52 |
+
with gr.Tab("for Spaces"):
|
53 |
+
with gr.Row(equal_height=True):
|
54 |
+
hardware = gr.CheckboxGroup(label="Specify hardware", choices=SPACE_HARDWARES, value=[])
|
55 |
+
stage = gr.CheckboxGroup(label="Specify stage", choices=SPACE_STAGES, value=[])
|
56 |
+
with gr.Row(equal_height=True):
|
57 |
+
sort = gr.Radio(label="Sort", choices=["last_modified", "likes", "downloads", "trending_score"], value="likes")
|
58 |
+
sort_method = gr.Radio(label="Sort method", choices=["ascending order", "descending order"], value="ascending order")
|
59 |
+
limit = gr.Number(label="Limit", info="If 0, fetches all models", value=1000, step=1, minimum=0, maximum=10000000)
|
60 |
+
fetch_detail = gr.CheckboxGroup(label="Fetch detail", choices=["Space Runtime"], value=["Space Runtime"])
|
61 |
+
with gr.Row(equal_height=True):
|
62 |
+
show_labels = gr.CheckboxGroup(label="Show items", choices=get_labels(), value=get_valid_labels())
|
63 |
+
run_button = gr.Button("Search", variant="primary")
|
64 |
+
with gr.Tab("Find Serverless Inference API enabled models"):
|
65 |
+
with gr.Group():
|
66 |
+
with gr.Row(equal_height=True):
|
67 |
+
infer_repo_types = gr.CheckboxGroup(label="Repo type", choices=["model", "dataset", "space"], value=["model"], visible=False)
|
68 |
+
with gr.Column():
|
69 |
+
infer_infer_status = gr.Radio(label="Inference status", choices=["warm", "cold", "frozen", "all"], value="warm")
|
70 |
+
gr.Markdown("[About the Inference API status (Warm, Cold, Frozen)](https://huggingface.co/docs/api-inference/supported-models)", elem_classes="info")
|
71 |
+
with gr.Column():
|
72 |
+
infer_gated_status = gr.Radio(label="Gated status", choices=["gated", "non-gated", "all"], value="all")
|
73 |
+
infer_appr_status = gr.CheckboxGroup(label="Approval method", choices=["auto", "manual"], value=["auto", "manual"])
|
74 |
+
infer_run_button = gr.Button("Search", variant="primary")
|
75 |
with gr.Group():
|
76 |
with gr.Accordion("Filter", open=False):
|
77 |
+
hide_labels = gr.CheckboxGroup(label="Hide items", choices=[], value=[], visible=False)
|
78 |
with gr.Row(equal_height=True):
|
79 |
filter_item1 = gr.Dropdown(label="Filter item", choices=[""], value="", visible=False)
|
80 |
filter1 = gr.Dropdown(label="Filter", choices=[""], value="", allow_custom_value=True, visible=False)
|
81 |
filter_btn = gr.Button("Apply filter", variant="secondary", visible=False)
|
82 |
+
result_df = gr.DataFrame(label="Results", type="pandas", value=None, interactive=False)
|
83 |
|
84 |
+
run_button.click(search, [repo_types, sort, sort_method, filter_str, search_str, author, tags, infer_status, gated_status, appr_status,
|
85 |
+
size_categories, limit, hardware, stage, fetch_detail, show_labels, search_result],
|
86 |
+
[result_df, hide_labels, search_result])\
|
87 |
+
.success(update_filter, [filter_item1, search_result], [filter_item1, filter1, filter_btn, search_result], queue=False)
|
88 |
+
infer_run_button.click(search, [infer_repo_types, sort, sort_method, filter_str, search_str, author, tags, infer_infer_status, infer_gated_status, infer_appr_status,
|
89 |
+
size_categories, limit, hardware, stage, fetch_detail, show_labels, search_result],
|
90 |
+
[result_df, hide_labels, search_result])\
|
91 |
.success(update_filter, [filter_item1, search_result], [filter_item1, filter1, filter_btn, search_result], queue=False)
|
92 |
+
gr.on(triggers=[hide_labels.change, filter_btn.click], fn=update_df, inputs=[hide_labels, filter_item1, filter1, search_result],
|
93 |
outputs=[result_df, search_result], trigger_mode="once", queue=False, show_api=False)
|
94 |
filter_item1.change(update_filter, [filter_item1, search_result], [filter_item1, filter1, filter_btn, search_result], queue=False, show_api=False)
|
95 |
+
subtag_cat.change(update_subtag_items, [subtag_cat], [subtag_item], queue=False, show_api=False)
|
96 |
+
subtug_btn.click(update_subtags, [tags, subtag_cat, subtag_item], [tags], queue=False, show_api=False)
|
97 |
+
tag_btn.click(update_tags, [tags, tag_item], [tags], queue=False, show_api=False)
|
98 |
|
99 |
demo.queue().launch()
|
hfconstants.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
DS_SIZE_CATEGORIES = ["n<1K", "1K<n<10K", "10K<n<100K", "100K<n<1M", "1M<n<10M", "10M<n<100M",
|
3 |
+
"100M<n<1B", "1B<n<10B", "10B<n<100B", "100B<n<1T", "n>1T"]
|
4 |
+
|
5 |
+
SPACE_HARDWARES = ["cpu-basic", "zero-a10g", "cpu-upgrade", "t4-small", "l4x1", "a10g-large", "l40sx1", "a10g-small", "t4-medium", "cpu-xl", "a100-large"]
|
6 |
+
|
7 |
+
SPACE_STAGES = ["RUNNING", "SLEEPING", "RUNTIME_ERROR", "PAUSED", "BUILD_ERROR", "CONFIG_ERROR", "BUILDING", "APP_STARTING", "RUNNING_APP_STARTING"]
|
hfsearch.py
CHANGED
@@ -1,7 +1,82 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from huggingface_hub import HfApi
|
|
|
4 |
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
class Labels():
|
7 |
VALID_DTYPE = ["str", "number", "bool", "date", "markdown"]
|
@@ -9,65 +84,210 @@ class Labels():
|
|
9 |
def __init__(self):
|
10 |
self.types = {}
|
11 |
self.orders = {}
|
|
|
12 |
|
13 |
-
def set(self, label: str
|
14 |
-
if
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def get(self):
|
19 |
labels = list(self.types.keys())
|
20 |
labels.sort(key=lambda x: self.orders[x])
|
21 |
label_types = [self.types[s] for s in labels]
|
22 |
return labels, label_types
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
24 |
def get_null_value(self, type: str):
|
25 |
if type == "bool": return False
|
26 |
elif type == "number" or type == "date": return 0
|
27 |
else: return "None"
|
28 |
|
|
|
|
|
29 |
class HFSearchResult():
|
30 |
def __init__(self):
|
31 |
self.labels = Labels()
|
32 |
self.current_item = {}
|
33 |
-
self.
|
34 |
self.item_list = []
|
35 |
-
self.
|
36 |
self.item_hide_flags = []
|
37 |
-
self.
|
|
|
38 |
self.filter_items = None
|
39 |
self.filters = None
|
40 |
gc.collect()
|
41 |
|
42 |
def reset(self):
|
43 |
self.__init__()
|
44 |
-
|
45 |
-
def
|
46 |
-
self.labels.set(label
|
47 |
self.current_item[label] = data
|
48 |
-
|
49 |
-
|
50 |
-
def next(self):
|
51 |
self.item_list.append(self.current_item.copy())
|
52 |
self.current_item = {}
|
53 |
-
self.
|
54 |
-
self.
|
|
|
55 |
|
56 |
-
def
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
def
|
62 |
labels, label_types = self.labels.get()
|
63 |
self._do_filter()
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
67 |
return df, show_labels, show_label_types
|
68 |
|
69 |
-
def
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def set_filter(self, filter_item1: str, filter1: str):
|
73 |
if not filter_item1 and not filter1:
|
@@ -100,11 +320,17 @@ class HFSearchResult():
|
|
100 |
flags.append(flag)
|
101 |
self.item_hide_flags = flags
|
102 |
|
|
|
|
|
|
|
|
|
|
|
103 |
def get_gr_df(self):
|
104 |
-
df, labels, label_types = self.
|
105 |
-
|
|
|
106 |
|
107 |
-
def
|
108 |
return gr.update(choices=self.labels.get()[0], value=[], visible=True)
|
109 |
|
110 |
def get_gr_filter_item(self, filter_item: str=""):
|
@@ -124,48 +350,17 @@ class HFSearchResult():
|
|
124 |
else: d[v] = 1
|
125 |
return gr.update(choices=[""] + [t[0] for t in sorted(d.items(), key=lambda x : x[1])][:100], value="", visible=True)
|
126 |
|
127 |
-
def
|
128 |
-
|
129 |
-
|
130 |
-
# https://huggingface.co/docs/huggingface_hub/package_reference/hf_api
|
131 |
-
# https://huggingface.co/docs/huggingface_hub/package_reference/hf_api#huggingface_hub.ModelInfo
|
132 |
-
@spaces.GPU
|
133 |
-
def search(sort: str, sort_method: str, filter: str, author: str, infer: str, gated: str, appr: list[str], limit: int, r: HFSearchResult):
|
134 |
try:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
if author: kwargs["author"] = author
|
139 |
-
if gated == "gated": kwargs["gated"] = True
|
140 |
-
elif gated == "non-gated": kwargs["gated"] = False
|
141 |
-
if infer != "all": kwargs["inference"] = infer
|
142 |
-
if sort_method == "descending order": kwargs["direction"] = -1
|
143 |
-
if limit > 0: kwargs["limit"] = limit
|
144 |
-
models = api.list_models(sort=sort, cardData=True, full=True, **kwargs)
|
145 |
-
r.reset()
|
146 |
-
i = 1
|
147 |
-
for model in models:
|
148 |
-
if model.gated is not None and model.gated and model.gated not in appr: continue
|
149 |
-
r.set(i, "No.", "number", 0)
|
150 |
-
r.set(model.id, "Model", "markdown", 2, f"[{md_lb(model.id, 48)}](https://hf.co/{model.id})")
|
151 |
-
if model.inference is not None: r.set(model.inference, "Status", "markdown", 4, md_lb(model.inference, 8))
|
152 |
-
#if infer != "all": r.set(infer, "Status", "markdown", 4)
|
153 |
-
if model.gated is not None: r.set(model.gated if model.gated else "off", "Gated", "str", 6)
|
154 |
-
#if gated != "all": r.set("on" if gated == "gated" else "off", "Gated", "str", 6)
|
155 |
-
if model.library_name is not None: r.set(model.library_name, "Library", "markdown", 10, md_lb(model.library_name, 12))
|
156 |
-
if model.pipeline_tag is not None: r.set(model.pipeline_tag, "Pipeline", "markdown", 11, md_lb(model.pipeline_tag, 15))
|
157 |
-
if model.last_modified is not None: r.set(model.last_modified, "LastMod.", "date", 12)
|
158 |
-
if model.likes is not None: r.set(model.likes, "Likes", "number", 13)
|
159 |
-
if model.downloads is not None: r.set(model.downloads, "DLs", "number", 14)
|
160 |
-
if model.downloads_all_time is not None: r.set(model.downloads_all_time, "AllDLs", "number", 15)
|
161 |
-
r.next()
|
162 |
-
i += 1
|
163 |
-
return r.get_gr_df(), r.get_gr_hide_item(), r
|
164 |
except Exception as e:
|
165 |
raise gr.Error(e)
|
166 |
|
167 |
-
def update_df(
|
168 |
-
r.set_hide(
|
169 |
r.set_filter(filter_item1, filter1)
|
170 |
return r.get_gr_df(), r
|
171 |
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from huggingface_hub import HfApi, ModelInfo, DatasetInfo, SpaceInfo
|
4 |
+
from typing import Union
|
5 |
import gc
|
6 |
+
import pandas as pd
|
7 |
+
import datetime
|
8 |
+
import json
|
9 |
+
import re
|
10 |
+
from hfconstants import DS_SIZE_CATEGORIES, SPACE_HARDWARES, SPACE_STAGES
|
11 |
+
|
12 |
+
@spaces.GPU
|
13 |
+
def dummy_gpu():
|
14 |
+
pass
|
15 |
+
|
16 |
+
RESULT_ITEMS = {
|
17 |
+
"Type": [1, "str", True],
|
18 |
+
"ID": [2, "markdown", True, "40%"],
|
19 |
+
"Status": [4, "markdown", True],
|
20 |
+
"Gated": [6, "str", True],
|
21 |
+
"Likes": [10, "number", True],
|
22 |
+
"DLs": [12, "number", True],
|
23 |
+
"AllDLs": [13, "number", False],
|
24 |
+
"Trending": [16, "number", True],
|
25 |
+
"LastMod.": [17, "str", True],
|
26 |
+
"Library": [20, "markdown", False],
|
27 |
+
"Pipeline": [21, "markdown", True],
|
28 |
+
"Hardware": [25, "str", False],
|
29 |
+
"Stage": [26, "str", False],
|
30 |
+
"NFAA": [40, "str", False],
|
31 |
+
}
|
32 |
+
|
33 |
+
try:
|
34 |
+
with open("tags.json", encoding="utf-8") as f:
|
35 |
+
TAGS = json.load(f)
|
36 |
+
with open("subtags.json", encoding="utf-8") as f:
|
37 |
+
SUBTAGS = json.load(f)
|
38 |
+
except Exception as e:
|
39 |
+
TAGS = []
|
40 |
+
SUBTAGS = {}
|
41 |
+
print(e)
|
42 |
+
|
43 |
+
def get_tags():
|
44 |
+
return TAGS[0:1000]
|
45 |
+
|
46 |
+
def get_subtag_categories():
|
47 |
+
return list(SUBTAGS.keys())
|
48 |
+
|
49 |
+
def update_subtag_items(category: str):
|
50 |
+
choices=[""] + list(SUBTAGS.get(category, []))
|
51 |
+
return gr.update(choices=choices, value=choices[0])
|
52 |
+
|
53 |
+
def update_subtags(tags: str, category: str, item: str):
|
54 |
+
addtag = f"{category}:{item}" if item else ""
|
55 |
+
newtags = f"{tags}\n{addtag}" if tags else addtag
|
56 |
+
return newtags
|
57 |
+
|
58 |
+
def update_tags(tags: str, item: str):
|
59 |
+
newtags = f"{tags}\n{item}" if tags else item
|
60 |
+
return newtags
|
61 |
+
|
62 |
+
def str_to_list(s: str):
|
63 |
+
try:
|
64 |
+
m = re.split("\n", s)
|
65 |
+
return [s.strip() for s in list(m)]
|
66 |
+
except Exception:
|
67 |
+
return []
|
68 |
+
|
69 |
+
def is_valid_arg(s: str):
|
70 |
+
return len(str_to_list(s)) > 0
|
71 |
+
|
72 |
+
def get_labels():
|
73 |
+
return list(RESULT_ITEMS.keys())
|
74 |
+
|
75 |
+
def get_valid_labels():
|
76 |
+
return [k for k in list(RESULT_ITEMS.keys()) if RESULT_ITEMS[k][2]]
|
77 |
+
|
78 |
+
def date_to_str(dt: datetime.datetime):
|
79 |
+
return dt.strftime('%Y-%m-%d %H:%M')
|
80 |
|
81 |
class Labels():
|
82 |
VALID_DTYPE = ["str", "number", "bool", "date", "markdown"]
|
|
|
84 |
def __init__(self):
|
85 |
self.types = {}
|
86 |
self.orders = {}
|
87 |
+
self.widths = {}
|
88 |
|
89 |
+
def set(self, label: str):
|
90 |
+
if not label in RESULT_ITEMS.keys(): raise Exception(f"Invalid item: {label}")
|
91 |
+
item = RESULT_ITEMS.get(label)
|
92 |
+
if item[1] not in self.VALID_DTYPE: raise Exception(f"Invalid data type: {type}")
|
93 |
+
self.types[label] = item[1]
|
94 |
+
self.orders[label] = item[0]
|
95 |
+
if len(item) > 3: self.widths[label] = item[3]
|
96 |
+
else: self.widths[label] = "10%"
|
97 |
|
98 |
def get(self):
|
99 |
labels = list(self.types.keys())
|
100 |
labels.sort(key=lambda x: self.orders[x])
|
101 |
label_types = [self.types[s] for s in labels]
|
102 |
return labels, label_types
|
103 |
+
|
104 |
+
def get_widths(self):
|
105 |
+
labels = list(self.types.keys())
|
106 |
+
label_widths = [self.widths[s] for s in labels]
|
107 |
+
return label_widths
|
108 |
+
|
109 |
def get_null_value(self, type: str):
|
110 |
if type == "bool": return False
|
111 |
elif type == "number" or type == "date": return 0
|
112 |
else: return "None"
|
113 |
|
114 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/hf_api
|
115 |
+
# https://huggingface.co/docs/huggingface_hub/package_reference/hf_api#huggingface_hub.ModelInfo
|
116 |
class HFSearchResult():
|
117 |
def __init__(self):
|
118 |
self.labels = Labels()
|
119 |
self.current_item = {}
|
120 |
+
self.current_item_info = None
|
121 |
self.item_list = []
|
122 |
+
self.item_info_list = []
|
123 |
self.item_hide_flags = []
|
124 |
+
self.hide_labels = []
|
125 |
+
self.show_labels = []
|
126 |
self.filter_items = None
|
127 |
self.filters = None
|
128 |
gc.collect()
|
129 |
|
130 |
def reset(self):
|
131 |
self.__init__()
|
132 |
+
|
133 |
+
def _set(self, data, label: str):
|
134 |
+
self.labels.set(label)
|
135 |
self.current_item[label] = data
|
136 |
+
|
137 |
+
def _next(self):
|
|
|
138 |
self.item_list.append(self.current_item.copy())
|
139 |
self.current_item = {}
|
140 |
+
self.item_info_list.append(self.current_item_info)
|
141 |
+
self.current_item_info = None
|
142 |
+
self.item_hide_flags.append(False)
|
143 |
|
144 |
+
def add_item(self, i: Union[ModelInfo, DatasetInfo, SpaceInfo]):
|
145 |
+
self.current_item_info = i
|
146 |
+
if isinstance(i, ModelInfo): type = "model"
|
147 |
+
elif isinstance(i, DatasetInfo): type = "dataset"
|
148 |
+
elif isinstance(i, SpaceInfo): type = "space"
|
149 |
+
else: return
|
150 |
+
self._set(type, "Type")
|
151 |
+
self._set(i.id, "ID")
|
152 |
+
if i.likes is not None: self._set(i.likes, "Likes")
|
153 |
+
if i.last_modified is not None: self._set(date_to_str(i.last_modified), "LastMod.")
|
154 |
+
if i.trending_score is not None: self._set(int(i.trending_score), "Trending")
|
155 |
+
if i.tags is not None: self._set("True" if "not-for-all-audiences" in i.tags else "False", "NFAA")
|
156 |
+
if type in ["model", "dataset"]:
|
157 |
+
if i.gated is not None: self._set(i.gated if i.gated else "off", "Gated")
|
158 |
+
if i.downloads is not None: self._set(i.downloads, "DLs")
|
159 |
+
if i.downloads_all_time is not None: self._set(i.downloads_all_time, "AllDLs")
|
160 |
+
if type == "model":
|
161 |
+
if i.inference is not None: self._set(i.inference, "Status")
|
162 |
+
if i.library_name is not None: self._set(i.library_name, "Library")
|
163 |
+
if i.pipeline_tag is not None: self._set(i.pipeline_tag, "Pipeline")
|
164 |
+
if type == "space":
|
165 |
+
if i.runtime is not None:
|
166 |
+
self._set(i.runtime.hardware, "Hardware")
|
167 |
+
self._set(i.runtime.stage, "Stage")
|
168 |
+
self._next()
|
169 |
+
|
170 |
+
def search(self, repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str, gated: str, appr: list[str],
|
171 |
+
size_categories: list, limit: int, hardware: list, stage: list, fetch_detail: list, show_labels: list):
|
172 |
+
try:
|
173 |
+
self.reset()
|
174 |
+
self.show_labels = show_labels.copy()
|
175 |
+
api = HfApi()
|
176 |
+
kwargs = {}
|
177 |
+
mkwargs = {}
|
178 |
+
dkwargs = {}
|
179 |
+
skwargs = {}
|
180 |
+
if filter_str: kwargs["filter"] = str_to_list(filter_str)
|
181 |
+
if search_str: kwargs["search"] = search_str
|
182 |
+
if author: kwargs["author"] = author
|
183 |
+
if tags and is_valid_arg(tags):
|
184 |
+
mkwargs["tags"] = str_to_list(tags)
|
185 |
+
dkwargs["tags"] = str_to_list(tags)
|
186 |
+
if limit > 0: kwargs["limit"] = limit
|
187 |
+
if sort_method == "descending order": kwargs["direction"] = -1
|
188 |
+
if gated == "gated":
|
189 |
+
mkwargs["gated"] = True
|
190 |
+
dkwargs["gated"] = True
|
191 |
+
elif gated == "non-gated":
|
192 |
+
mkwargs["gated"] = False
|
193 |
+
dkwargs["gated"] = False
|
194 |
+
mkwargs["sort"] = sort
|
195 |
+
if len(size_categories) > 0: dkwargs["size_categories"] = size_categories
|
196 |
+
if infer != "all": mkwargs["inference"] = infer
|
197 |
+
if "model" in repo_types:
|
198 |
+
models = api.list_models(full=True, cardData=True, **kwargs, **mkwargs)
|
199 |
+
for model in models:
|
200 |
+
if model.gated is not None and model.gated and model.gated not in appr: continue
|
201 |
+
self.add_item(model)
|
202 |
+
if "dataset" in repo_types:
|
203 |
+
datasets = api.list_datasets(full=True, **kwargs, **dkwargs)
|
204 |
+
for dataset in datasets:
|
205 |
+
if dataset.gated is not None and dataset.gated and dataset.gated not in appr: continue
|
206 |
+
self.add_item(dataset)
|
207 |
+
if "space" in repo_types:
|
208 |
+
if "Space Runtime" in fetch_detail:
|
209 |
+
spaces = api.list_spaces(expand=["cardData", "datasets", "disabled", "lastModified", "createdAt",
|
210 |
+
"likes", "models", "private", "runtime", "sdk", "sha", "tags", "trendingScore"], **kwargs, **skwargs)
|
211 |
+
else: spaces = api.list_spaces(full=True, **kwargs, **skwargs)
|
212 |
+
for space in spaces:
|
213 |
+
if space.gated is not None and space.gated and space.gated not in appr: continue
|
214 |
+
if space.runtime is not None:
|
215 |
+
if len(hardware) > 0 and space.runtime.stage == "RUNNING" and space.runtime.hardware not in hardware: continue
|
216 |
+
if len(stage) > 0 and space.runtime.stage not in stage: continue
|
217 |
+
self.add_item(space)
|
218 |
+
if sort == "downloads" and ("space" not in repo_types): self.sort("DLs")
|
219 |
+
elif sort == "downloads_all_time" and ("space" not in repo_types): self.sort("AllDLs")
|
220 |
+
elif sort == "likes": self.sort("Likes")
|
221 |
+
elif sort == "trending_score": self.sort("Trending")
|
222 |
+
else: self.sort("LastMod.")
|
223 |
+
except Exception as e:
|
224 |
+
raise Exception(f"Search error: {e}") from e
|
225 |
|
226 |
+
def get(self):
|
227 |
labels, label_types = self.labels.get()
|
228 |
self._do_filter()
|
229 |
+
dflist = [[item.get(l, self.labels.get_null_value(t)) for l, t in zip(labels, label_types)] for item, is_hide in zip(self.item_list, self.item_hide_flags) if not is_hide]
|
230 |
+
df = self._to_pandas(dflist, labels)
|
231 |
+
show_label_types = [t for l, t in zip(labels, label_types) if l not in self.hide_labels and l in self.show_labels]
|
232 |
+
show_labels = [l for l in labels if l not in self.hide_labels and l in self.show_labels]
|
233 |
return df, show_labels, show_label_types
|
234 |
|
235 |
+
def _to_pandas(self, dflist: list, labels: list):
|
236 |
+
# https://pandas.pydata.org/docs/reference/api/pandas.io.formats.style.Styler.apply.html
|
237 |
+
# https://stackoverflow.com/questions/41654949/pandas-style-function-to-highlight-specific-columns
|
238 |
+
# https://stackoverflow.com/questions/69832206/pandas-styling-with-conditional-rules
|
239 |
+
# https://stackoverflow.com/questions/41203959/conditionally-format-python-pandas-cell
|
240 |
+
# https://stackoverflow.com/questions/51187868/how-do-i-remove-and-re-sort-reindex-columns-after-applying-style-in-python-pan
|
241 |
+
# https://stackoverflow.com/questions/36921951/truth-value-of-a-series-is-ambiguous-use-a-empty-a-bool-a-item-a-any-o
|
242 |
+
def rank_df(sdf: pd.DataFrame, df: pd.DataFrame, col: str):
|
243 |
+
ranks = [(0.5, "gold"), (0.75, "orange"), (0.9, "orangered")]
|
244 |
+
for t, color in ranks:
|
245 |
+
sdf.loc[df[col] >= df[col].quantile(q=t), [col]] = f'color: {color}'
|
246 |
+
return sdf
|
247 |
+
|
248 |
+
def highlight_df(x: pd.DataFrame, df: pd.DataFrame):
|
249 |
+
sdf = pd.DataFrame("", index=x.copy().index, columns=x.copy().columns)
|
250 |
+
columns = df.columns
|
251 |
+
if "Trending" in columns: sdf = rank_df(sdf, df, "Trending")
|
252 |
+
if "Likes" in columns: sdf = rank_df(sdf, df, "Likes")
|
253 |
+
if "AllDLs" in columns: sdf = rank_df(sdf, df, "AllDLs")
|
254 |
+
if "DLs" in columns: sdf = rank_df(sdf, df, "DLs")
|
255 |
+
if "Status" in columns:
|
256 |
+
sdf.loc[df["Status"] == "warm", ["Type"]] = 'color: orange'
|
257 |
+
sdf.loc[df["Status"] == "cold", ["Type"]] = 'color: dodgerblue'
|
258 |
+
if "Gated" in columns:
|
259 |
+
sdf.loc[df["Gated"] == "auto", ["Gated"]] = 'color: dodgerblue'
|
260 |
+
sdf.loc[df["Gated"] == "manual", ["Gated"]] = 'color: crimson'
|
261 |
+
if "Stage" in columns and "Hardware" in columns:
|
262 |
+
sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] != "zero-a10g") & (df["Hardware"] != "cpu-basic") & (df["Hardware"] != "None") & (df["Hardware"]), ["Hardware", "Type"]] = 'color: lime'
|
263 |
+
sdf.loc[(df["Stage"] == "RUNNING") & (df["Hardware"] == "zero-a10g"), ["Hardware", "Type"]] = 'color: green'
|
264 |
+
sdf.loc[(df["Type"] == "space") & (df["Stage"] != "RUNNING")] = 'opacity: 0.5'
|
265 |
+
sdf.loc[(df["Type"] == "space") & (df["Stage"] != "RUNNING"), ["Type"]] = 'color: crimson'
|
266 |
+
sdf.loc[df["Stage"] == "RUNNING", ["Stage"]] = 'color: lime'
|
267 |
+
if "NFAA" in columns: sdf.loc[df["NFAA"] == "True", ["Type"]] = 'background-color: hotpink'
|
268 |
+
show_columns = x.copy().columns
|
269 |
+
style_columns = sdf.columns
|
270 |
+
drop_columns = [c for c in style_columns if c not in show_columns]
|
271 |
+
sdf = sdf.drop(drop_columns, axis=1)
|
272 |
+
return sdf
|
273 |
+
|
274 |
+
def id_to_md(df: pd.DataFrame):
|
275 |
+
if df["Type"] == "dataset": return f'[{df["ID"]}](https://hf.co/datasets/{df["ID"]})'
|
276 |
+
elif df["Type"] == "space": return f'[{df["ID"]}](https://hf.co/spaces/{df["ID"]})'
|
277 |
+
else: return f'[{df["ID"]}](https://hf.co/{df["ID"]})'
|
278 |
+
|
279 |
+
def format_md_df(df: pd.DataFrame):
|
280 |
+
df["ID"] = df.apply(id_to_md, axis=1)
|
281 |
+
return df
|
282 |
+
|
283 |
+
hide_labels = [l for l in labels if l in self.hide_labels or l not in self.show_labels]
|
284 |
+
df = format_md_df(pd.DataFrame(dflist, columns=labels))
|
285 |
+
ref_df = df.copy()
|
286 |
+
df = df.drop(hide_labels, axis=1).style.apply(highlight_df, axis=None, df=ref_df)
|
287 |
+
return df
|
288 |
+
|
289 |
+
def set_hide(self, hide_labels: list):
|
290 |
+
self.hide_labels = hide_labels.copy()
|
291 |
|
292 |
def set_filter(self, filter_item1: str, filter1: str):
|
293 |
if not filter_item1 and not filter1:
|
|
|
320 |
flags.append(flag)
|
321 |
self.item_hide_flags = flags
|
322 |
|
323 |
+
def sort(self, key="Likes"):
|
324 |
+
if len(self.item_list) == 0: raise Exception("No item found.")
|
325 |
+
if not key in self.labels.get()[0]: key = "Likes"
|
326 |
+
self.item_list, self.item_hide_flags, self.item_info_list = zip(*sorted(zip(self.item_list, self.item_hide_flags, self.item_info_list), key=lambda x: x[0][key], reverse=True))
|
327 |
+
|
328 |
def get_gr_df(self):
|
329 |
+
df, labels, label_types = self.get()
|
330 |
+
widths = self.labels.get_widths()
|
331 |
+
return gr.update(type="pandas", value=df, headers=labels, datatype=label_types, column_widths=widths, wrap=True)
|
332 |
|
333 |
+
def get_gr_hide_labels(self):
|
334 |
return gr.update(choices=self.labels.get()[0], value=[], visible=True)
|
335 |
|
336 |
def get_gr_filter_item(self, filter_item: str=""):
|
|
|
350 |
else: d[v] = 1
|
351 |
return gr.update(choices=[""] + [t[0] for t in sorted(d.items(), key=lambda x : x[1])][:100], value="", visible=True)
|
352 |
|
353 |
+
def search(repo_types: list, sort: str, sort_method: str, filter_str: str, search_str: str, author: str, tags: str, infer: str,
|
354 |
+
gated: str, appr: list[str], size_categories: list, limit: int, hardware: list, stage: list, fetch_detail: list, show_labels: list, r: HFSearchResult):
|
|
|
|
|
|
|
|
|
|
|
355 |
try:
|
356 |
+
r.search(repo_types, sort, sort_method, filter_str, search_str, author, tags, infer, gated, appr, size_categories,
|
357 |
+
limit, hardware, stage, fetch_detail, show_labels)
|
358 |
+
return r.get_gr_df(), r.get_gr_hide_labels(), r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
except Exception as e:
|
360 |
raise gr.Error(e)
|
361 |
|
362 |
+
def update_df(hide_labels: list, filter_item1: str, filter1: str, r: HFSearchResult):
|
363 |
+
r.set_hide(hide_labels)
|
364 |
r.set_filter(filter_item1, filter1)
|
365 |
return r.get_gr_df(), r
|
366 |
|
subtags.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tags.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|