import spaces import gradio as gr import torch from huggingface_hub import hf_hub_download from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, BitsAndBytesConfig import os #import subprocess #subprocess.run("pip list", shell=True) #subprocess.run("diffusers-cli env", shell=True) #from optimum.quanto import freeze, qfloat8, quantize HF_TOKEN = os.getenv("HF_TOKEN", "") device = "cuda" if torch.cuda.is_available() else "cpu" flux_repo = "multimodalart/FLUX.1-dev2pro-full" ckpt_path = "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" transformer_gguf = FluxTransformer2DModel.from_single_file(ckpt_path, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16, config=flux_repo, token=HF_TOKEN) transformer = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", torch_dtype=torch.bfloat16, token=HF_TOKEN) nf4_quantization_config = BitsAndBytesConfig(load_in_4bit=True) transformer_nf4 = FluxTransformer2DModel.from_pretrained(flux_repo, subfolder="transformer", quantization_config=nf4_quantization_config, torch_dtype=torch.bfloat16, token=HF_TOKEN) pipe = FluxPipeline.from_pretrained(flux_repo, transformer=transformer, torch_dtype=torch.bfloat16, token=HF_TOKEN) hyper_sd_lora = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") @spaces.GPU(duration=70) def infer(prompt: str, mode: str, is_lora: bool, progress=gr.Progress(track_tqdm=True)): global pipe try: pipe.unload_lora_weights() if mode == "Default": pipe.transformer = transformer elif mode == "GGUF": pipe.transformer = transformer_gguf elif mode == "NF4": pipe.transformer = transformer_nf4 if is_lora: pipe.load_lora_weights(hyper_sd_lora, adapter_name="hyper-sd") pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125]) steps = 8 else: steps = 28 pipe.to(device) image = pipe(prompt, generator=torch.manual_seed(0), num_inference_steps=steps).images[0] pipe.to("cpu") return image except Exception as e: raise gr.Error(e) with gr.Blocks() as demo: with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world", lines=1) mode = gr.Radio(label="Mode", choices=["Default", "GGUF", "NF4"], value="Default") is_lora = gr.Checkbox(label="Enable LoRA", value=True) gen_btn = gr.Button("Generate Image") with gr.Column(): result = gr.Image(label="Result Image") gen_btn.click(infer, [prompt, mode, is_lora], [result]) demo.launch()