Spaces:
Runtime error
Runtime error
Commit
Β·
f9238f7
1
Parent(s):
4373d44
update
Browse files
app.py
CHANGED
@@ -188,11 +188,14 @@ def get_pixels(i, t, evt: gr.SelectData):
|
|
188 |
|
189 |
|
190 |
|
191 |
-
def text_to_image(prompt,keywords,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural):
|
192 |
|
193 |
global stack
|
194 |
global state
|
195 |
|
|
|
|
|
|
|
196 |
with torch.no_grad():
|
197 |
time1 = time.time()
|
198 |
user_prompt = prompt
|
@@ -397,10 +400,7 @@ with gr.Blocks() as demo:
|
|
397 |
We propose <b>TextDiffuser-2</b>, aiming at unleashing the power of language models for text rendering. Specifically, we <b>tame a language model into a layout planner</b> to transform user prompt into a layout using the caption-OCR pairs. The language model demonstrates flexibility and automation by inferring keywords from user prompts or incorporating user-specified keywords to determine their positions. Secondly, we <b>leverage the language model in the diffusion model as the layout encoder</b> to represent the position and content of text at the line level. This approach enables diffusion models to generate text images with broader diversity.
|
398 |
</h2>
|
399 |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
400 |
-
π <b>Tips for using this demo</b>: <b>(1)</b> Please carefully read the disclaimer in the below. <b>(2)</b> The specification of keywords is optional. If provided, the language model will do its best to plan layouts using the given keywords. <b>(3)</b> If a template is given, the layout planner (M1) is not used. <b>(4)</b> Three operations, including redo, undo, and skip are provided. When using skip, only the left-top point of a keyword will be recorded, resulting in more diversity but sometimes decreasing the accuracy. <b>(5)</b> The layout planner can produce different layouts. You can increase the temperature to enhance the diversity.
|
401 |
-
</h2>
|
402 |
-
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
403 |
-
β¨ We also provide the experimental demo combining <b>TextDiffuser-2</b> and <b>LCM</b>. The inference is fast using less sampling steps, although the precision in text rendering might decrease.
|
404 |
</h2>
|
405 |
|
406 |
<style>
|
@@ -418,6 +418,7 @@ with gr.Blocks() as demo:
|
|
418 |
with gr.Column(scale=1):
|
419 |
prompt = gr.Textbox(label="Input your prompt here.", placeholder="A beautiful city skyline stamp of Shanghai")
|
420 |
keywords = gr.Textbox(label="(Optional) Input your keywords here. Keywords should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2")
|
|
|
421 |
|
422 |
with gr.Accordion("(Optional) Template - Click to paint", open=False):
|
423 |
with gr.Row():
|
@@ -437,7 +438,7 @@ with gr.Blocks() as demo:
|
|
437 |
radio = gr.Radio(["TextDiffuser-2", "TextDiffuser-2-LCM"], label="Choice of models", value="TextDiffuser-2")
|
438 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2. You may decease the step to 4 when using LCM.")
|
439 |
slider_guidance = gr.Slider(minimum=1, maximum=13, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg and is set to 7.5 in default. When using LCM, cfg is set to 1.")
|
440 |
-
slider_batch = gr.Slider(minimum=1, maximum=4, value=
|
441 |
slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.")
|
442 |
slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.")
|
443 |
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
|
@@ -450,7 +451,7 @@ with gr.Blocks() as demo:
|
|
450 |
gr.Markdown("Composed prompt")
|
451 |
composed_prompt = gr.Textbox(label='')
|
452 |
|
453 |
-
button.click(text_to_image, inputs=[prompt,keywords,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural], outputs=[output, composed_prompt])
|
454 |
|
455 |
gr.Markdown("## Prompt Examples")
|
456 |
gr.Examples(
|
@@ -467,7 +468,7 @@ with gr.Blocks() as demo:
|
|
467 |
["Newspaper with the title Love Story", "", False],
|
468 |
["A logo for the company EcoGrow, where the letters look like plants", "EcoGrow", False],
|
469 |
["A poster titled 'Quails of North America', showing different kinds of quails.", "Quails/of/North/America", False],
|
470 |
-
["A detailed portrait of a fox guardian with a shield with Kung Fu written on it, by victo ngai and justin gerard, digital art, realistic painting
|
471 |
["A stamp of breath of the wild", "breath/of/the/wild", False],
|
472 |
["Poster of the incoming movie Transformers", "Transformers", False],
|
473 |
["Some apples are on a table", "", True],
|
@@ -476,10 +477,12 @@ with gr.Blocks() as demo:
|
|
476 |
["a man holding a tennis racquet on a tennis court", "", True],
|
477 |
["hamburger with bacon, lettuce, tomato and cheese| promotional image| hyperquality| products shot| full - color| extreme render| mouthwatering", "", True],
|
478 |
],
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
|
|
|
|
483 |
)
|
484 |
|
485 |
gr.HTML(
|
|
|
188 |
|
189 |
|
190 |
|
191 |
+
def text_to_image(prompt,keywords,positive_prompt,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural):
|
192 |
|
193 |
global stack
|
194 |
global state
|
195 |
|
196 |
+
if len(positive_prompt.strip()) != 0:
|
197 |
+
prompt += positive_prompt
|
198 |
+
|
199 |
with torch.no_grad():
|
200 |
time1 = time.time()
|
201 |
user_prompt = prompt
|
|
|
400 |
We propose <b>TextDiffuser-2</b>, aiming at unleashing the power of language models for text rendering. Specifically, we <b>tame a language model into a layout planner</b> to transform user prompt into a layout using the caption-OCR pairs. The language model demonstrates flexibility and automation by inferring keywords from user prompts or incorporating user-specified keywords to determine their positions. Secondly, we <b>leverage the language model in the diffusion model as the layout encoder</b> to represent the position and content of text at the line level. This approach enables diffusion models to generate text images with broader diversity.
|
401 |
</h2>
|
402 |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
403 |
+
π <b>Tips for using this demo</b>: <b>(1)</b> Please carefully read the disclaimer in the below. <b>(2)</b> The specification of keywords is optional. If provided, the language model will do its best to plan layouts using the given keywords. <b>(3)</b> If a template is given, the layout planner (M1) is not used. <b>(4)</b> Three operations, including redo, undo, and skip are provided. When using skip, only the left-top point of a keyword will be recorded, resulting in more diversity but sometimes decreasing the accuracy. <b>(5)</b> The layout planner can produce different layouts. You can increase the temperature to enhance the diversity. β¨ <b>(6)</b> We also provide the experimental demo combining <b>TextDiffuser-2</b> and <b>LCM</b>. The inference is fast using less sampling steps, although the precision in text rendering might decrease.
|
|
|
|
|
|
|
404 |
</h2>
|
405 |
|
406 |
<style>
|
|
|
418 |
with gr.Column(scale=1):
|
419 |
prompt = gr.Textbox(label="Input your prompt here.", placeholder="A beautiful city skyline stamp of Shanghai")
|
420 |
keywords = gr.Textbox(label="(Optional) Input your keywords here. Keywords should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2")
|
421 |
+
positive_prompt = gr.Textbox(label="(Optional) Positive prompt to enhance the image quality", value=", showing different kinds of quails, digital art, very detailed, fantasy, high definition, cinematic light, dnd, trending on artstation")
|
422 |
|
423 |
with gr.Accordion("(Optional) Template - Click to paint", open=False):
|
424 |
with gr.Row():
|
|
|
438 |
radio = gr.Radio(["TextDiffuser-2", "TextDiffuser-2-LCM"], label="Choice of models", value="TextDiffuser-2")
|
439 |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2. You may decease the step to 4 when using LCM.")
|
440 |
slider_guidance = gr.Slider(minimum=1, maximum=13, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg and is set to 7.5 in default. When using LCM, cfg is set to 1.")
|
441 |
+
slider_batch = gr.Slider(minimum=1, maximum=4, value=6, step=1, label="Batch size", info="The number of images to be sampled.")
|
442 |
slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.")
|
443 |
slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.")
|
444 |
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True)
|
|
|
451 |
gr.Markdown("Composed prompt")
|
452 |
composed_prompt = gr.Textbox(label='')
|
453 |
|
454 |
+
button.click(text_to_image, inputs=[prompt,keywords,positive_prompt, radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural], outputs=[output, composed_prompt])
|
455 |
|
456 |
gr.Markdown("## Prompt Examples")
|
457 |
gr.Examples(
|
|
|
468 |
["Newspaper with the title Love Story", "", False],
|
469 |
["A logo for the company EcoGrow, where the letters look like plants", "EcoGrow", False],
|
470 |
["A poster titled 'Quails of North America', showing different kinds of quails.", "Quails/of/North/America", False],
|
471 |
+
["A detailed portrait of a fox guardian with a shield with Kung Fu written on it, by victo ngai and justin gerard, digital art, realistic painting", "kung/fu", False],
|
472 |
["A stamp of breath of the wild", "breath/of/the/wild", False],
|
473 |
["Poster of the incoming movie Transformers", "Transformers", False],
|
474 |
["Some apples are on a table", "", True],
|
|
|
477 |
["a man holding a tennis racquet on a tennis court", "", True],
|
478 |
["hamburger with bacon, lettuce, tomato and cheese| promotional image| hyperquality| products shot| full - color| extreme render| mouthwatering", "", True],
|
479 |
],
|
480 |
+
[
|
481 |
+
prompt,
|
482 |
+
keywords,
|
483 |
+
slider_natural
|
484 |
+
],
|
485 |
+
examples_per_page=20
|
486 |
)
|
487 |
|
488 |
gr.HTML(
|