Spaces:
Sleeping
Sleeping
import os | |
import re | |
import zipfile | |
import torch | |
import gradio as gr | |
import time | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, DiffusionPipeline, LCMScheduler | |
from tqdm import tqdm | |
from PIL import Image | |
from PIL import Image, ImageDraw, ImageFont | |
import random | |
import string | |
alphabet = string.digits + string.ascii_lowercase + string.ascii_uppercase + string.punctuation + ' ' # len(aphabet) = 95 | |
'''alphabet | |
0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ | |
''' | |
# if not os.path.exists('Arial.ttf'): | |
# os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/Arial.ttf') | |
if not os.path.exists('images2'): | |
os.system('wget https://huggingface.co/datasets/JingyeChen22/TextDiffuser/resolve/main/images2.zip') | |
with zipfile.ZipFile('images2.zip', 'r') as zip_ref: | |
zip_ref.extractall('.') | |
# if not os.path.exists('architecture.jpg'): | |
# os.system('wget https://huggingface.co/JingyeChen22/textdiffuser2-full-ft/tree/main/layout_planner_m1') | |
# if not os.path.exists('gray256.jpg'): | |
# os.system('wget https://huggingface.co/JingyeChen22/textdiffuser2-full-ft/blob/main/gray256.jpg') | |
# print(os.system('apt install mlocate')) | |
os.system('nvidia-smi') | |
os.system('ls') | |
# print(os.system('pwd')) | |
# print(os.system('locate gray256.jpg')) | |
# # img = Image.open('locate gray256.jpg') | |
# # print(img.size) | |
# exit(0) | |
#### import m1 | |
from fastchat.model import load_model, get_conversation_template | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
m1_model_path = 'JingyeChen22/textdiffuser2_layout_planner' | |
# m1_model, m1_tokenizer = load_model( | |
# m1_model_path, | |
# 'cuda', | |
# 1, | |
# None, | |
# False, | |
# False, | |
# revision="main", | |
# debug=False, | |
# ) | |
m1_tokenizer = AutoTokenizer.from_pretrained(m1_model_path, use_fast=False) | |
m1_model = AutoModelForCausalLM.from_pretrained( | |
m1_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True | |
).cuda() | |
#### import diffusion models | |
text_encoder = CLIPTextModel.from_pretrained( | |
'JingyeChen22/textdiffuser2-full-ft', subfolder="text_encoder", ignore_mismatched_sizes=True | |
).half().cuda() | |
tokenizer = CLIPTokenizer.from_pretrained( | |
'runwayml/stable-diffusion-v1-5', subfolder="tokenizer" | |
) | |
#### additional tokens are introduced, including coordinate tokens and character tokens | |
print('***************') | |
print(len(tokenizer)) | |
for i in range(520): | |
tokenizer.add_tokens(['l' + str(i) ]) # left | |
tokenizer.add_tokens(['t' + str(i) ]) # top | |
tokenizer.add_tokens(['r' + str(i) ]) # width | |
tokenizer.add_tokens(['b' + str(i) ]) # height | |
for c in alphabet: | |
tokenizer.add_tokens([f'[{c}]']) | |
print(len(tokenizer)) | |
print('***************') | |
vae = AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="vae").half().cuda() | |
unet = UNet2DConditionModel.from_pretrained( | |
'JingyeChen22/textdiffuser2-full-ft', subfolder="unet" | |
).half().cuda() | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
#### load lcm components | |
model_id = "lambdalabs/sd-pokemon-diffusers" | |
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" | |
pipe = DiffusionPipeline.from_pretrained(model_id, unet=unet, tokenizer=tokenizer, text_encoder=text_encoder) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe.load_lora_weights(lcm_lora_id) | |
pipe.to(device="cuda") | |
#### for interactive | |
stack = [] | |
state = 0 | |
font = ImageFont.truetype("./Arial.ttf", 32) | |
def skip_fun(i, t): | |
global state | |
state = 0 | |
def exe_undo(i, t): | |
global stack | |
global state | |
state = 0 | |
stack = [] | |
image = Image.open(f'./gray256.jpg') | |
print('stack', stack) | |
return image | |
def exe_redo(i, t): | |
global state | |
state = 0 | |
if len(stack) > 0: | |
stack.pop() | |
image = Image.open(f'./gray256.jpg') | |
draw = ImageDraw.Draw(image) | |
for items in stack: | |
# print('now', items) | |
text_position, t = items | |
if len(text_position) == 2: | |
x, y = text_position | |
text_color = (255, 0, 0) | |
draw.text((x+2, y), t, font=font, fill=text_color) | |
r = 4 | |
leftUpPoint = (x-r, y-r) | |
rightDownPoint = (x+r, y+r) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
elif len(text_position) == 4: | |
x0, y0, x1, y1 = text_position | |
text_color = (255, 0, 0) | |
draw.text((x0+2, y0), t, font=font, fill=text_color) | |
r = 4 | |
leftUpPoint = (x0-r, y0-r) | |
rightDownPoint = (x0+r, y0+r) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) | |
print('stack', stack) | |
return image | |
def get_pixels(i, t, evt: gr.SelectData): | |
global state | |
text_position = evt.index | |
if state == 0: | |
stack.append( | |
(text_position, t) | |
) | |
print(text_position, stack) | |
state = 1 | |
else: | |
(_, t) = stack.pop() | |
x, y = _ | |
stack.append( | |
((x,y,text_position[0],text_position[1]), t) | |
) | |
state = 0 | |
image = Image.open(f'./gray256.jpg') | |
draw = ImageDraw.Draw(image) | |
for items in stack: | |
# print('now', items) | |
text_position, t = items | |
if len(text_position) == 2: | |
x, y = text_position | |
text_color = (255, 0, 0) | |
draw.text((x+2, y), t, font=font, fill=text_color) | |
r = 4 | |
leftUpPoint = (x-r, y-r) | |
rightDownPoint = (x+r, y+r) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
elif len(text_position) == 4: | |
x0, y0, x1, y1 = text_position | |
text_color = (255, 0, 0) | |
draw.text((x0+2, y0), t, font=font, fill=text_color) | |
r = 4 | |
leftUpPoint = (x0-r, y0-r) | |
rightDownPoint = (x0+r, y0+r) | |
draw.ellipse((leftUpPoint,rightDownPoint), fill='red') | |
draw.rectangle((x0,y0,x1,y1), outline=(255, 0, 0) ) | |
print('stack', stack) | |
return image | |
def text_to_image(prompt,keywords,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural): | |
global stack | |
global state | |
with torch.no_grad(): | |
time1 = time.time() | |
user_prompt = prompt | |
if slider_natural: | |
user_prompt = f'{user_prompt}' | |
composed_prompt = user_prompt | |
prompt = tokenizer.encode(user_prompt) | |
else: | |
if len(stack) == 0: | |
if len(keywords.strip()) == 0: | |
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. All keywords are included in the caption. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {user_prompt}' | |
else: | |
keywords = keywords.split('/') | |
keywords = [i.strip() for i in keywords] | |
template = f'Given a prompt that will be used to generate an image, plan the layout of visual text for the image. The size of the image is 128x128. Therefore, all properties of the positions should not exceed 128, including the coordinates of top, left, right, and bottom. In addition, we also provide all keywords at random order for reference. You dont need to specify the details of font styles. At each line, the format should be keyword left, top, right, bottom. So let us begin. Prompt: {prompt}. Keywords: {str(keywords)}' | |
msg = template | |
conv = get_conversation_template(m1_model_path) | |
conv.append_message(conv.roles[0], msg) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
inputs = m1_tokenizer([prompt], return_token_type_ids=False) | |
inputs = {k: torch.tensor(v).to('cuda') for k, v in inputs.items()} | |
output_ids = m1_model.generate( | |
**inputs, | |
do_sample=True, | |
temperature=slider_temperature, | |
repetition_penalty=1.0, | |
max_new_tokens=512, | |
) | |
if m1_model.config.is_encoder_decoder: | |
output_ids = output_ids[0] | |
else: | |
output_ids = output_ids[0][len(inputs["input_ids"][0]) :] | |
outputs = m1_tokenizer.decode( | |
output_ids, skip_special_tokens=True, spaces_between_special_tokens=False | |
) | |
print(f"[{conv.roles[0]}]\n{msg}") | |
print(f"[{conv.roles[1]}]\n{outputs}") | |
ocrs = outputs.split('\n') | |
time2 = time.time() | |
print(time2-time1) | |
# user_prompt = prompt | |
current_ocr = ocrs | |
ocr_ids = [] | |
print('user_prompt', user_prompt) | |
print('current_ocr', current_ocr) | |
for ocr in current_ocr: | |
ocr = ocr.strip() | |
if len(ocr) == 0 or '###' in ocr or '.com' in ocr: | |
continue | |
items = ocr.split() | |
pred = ' '.join(items[:-1]) | |
box = items[-1] | |
l,t,r,b = box.split(',') | |
l,t,r,b = int(l), int(t), int(r), int(b) | |
ocr_ids.extend(['l'+str(l), 't'+str(t), 'r'+str(r), 'b'+str(b)]) | |
char_list = list(pred) | |
char_list = [f'[{i}]' for i in char_list] | |
ocr_ids.extend(char_list) | |
ocr_ids.append(tokenizer.eos_token_id) | |
caption_ids = tokenizer( | |
user_prompt, truncation=True, return_tensors="pt" | |
).input_ids[0].tolist() | |
try: | |
ocr_ids = tokenizer.encode(ocr_ids) | |
prompt = caption_ids + ocr_ids | |
except: | |
prompt = caption_ids | |
user_prompt = tokenizer.decode(prompt) | |
composed_prompt = tokenizer.decode(prompt) | |
else: | |
user_prompt += ' <|endoftext|>' | |
for items in stack: | |
position, text = items | |
if len(position) == 2: | |
x, y = position | |
x = x // 4 | |
y = y // 4 | |
text_str = ' '.join([f'[{c}]' for c in list(text)]) | |
user_prompt += f'<|startoftext|> l{x} t{y} {text_str} <|endoftext|>' | |
elif len(position) == 4: | |
x0, y0, x1, y1 = position | |
x0 = x0 // 4 | |
y0 = y0 // 4 | |
x1 = x1 // 4 | |
y1 = y1 // 4 | |
text_str = ' '.join([f'[{c}]' for c in list(text)]) | |
user_prompt += f'<|startoftext|> l{x0} t{y0} r{x1} b{y1} {text_str} <|endoftext|>' | |
# composed_prompt = user_prompt | |
prompt = tokenizer.encode(user_prompt) | |
composed_prompt = tokenizer.decode(prompt) | |
prompt = prompt[:77] | |
while len(prompt) < 77: | |
prompt.append(tokenizer.pad_token_id) | |
if radio == 'TextDiffuser-2': | |
prompts_cond = prompt | |
prompts_nocond = [tokenizer.pad_token_id]*77 | |
prompts_cond = [prompts_cond] * slider_batch | |
prompts_nocond = [prompts_nocond] * slider_batch | |
prompts_cond = torch.Tensor(prompts_cond).long().cuda() | |
prompts_nocond = torch.Tensor(prompts_nocond).long().cuda() | |
scheduler = DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="scheduler") | |
scheduler.set_timesteps(slider_step) | |
noise = torch.randn((slider_batch, 4, 64, 64)).to("cuda") | |
input = noise.half() | |
encoder_hidden_states_cond = text_encoder(prompts_cond)[0].half() | |
encoder_hidden_states_nocond = text_encoder(prompts_nocond)[0] .half() | |
for t in tqdm(scheduler.timesteps): | |
with torch.no_grad(): # classifier free guidance | |
noise_pred_cond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_cond[:slider_batch]).sample # b, 4, 64, 64 | |
noise_pred_uncond = unet(sample=input, timestep=t, encoder_hidden_states=encoder_hidden_states_nocond[:slider_batch]).sample # b, 4, 64, 64 | |
noisy_residual = noise_pred_uncond + slider_guidance * (noise_pred_cond - noise_pred_uncond) # b, 4, 64, 64 | |
input = scheduler.step(noisy_residual, t, input).prev_sample | |
del noise_pred_cond | |
del noise_pred_uncond | |
torch.cuda.empty_cache() | |
# decode | |
input = 1 / vae.config.scaling_factor * input | |
images = vae.decode(input, return_dict=False)[0] | |
width, height = 512, 512 | |
results = [] | |
new_image = Image.new('RGB', (2*width, 2*height)) | |
for index, image in enumerate(images.cpu().float()): | |
image = (image / 2 + 0.5).clamp(0, 1).unsqueeze(0) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).round().astype("uint8")).convert('RGB') | |
results.append(image) | |
row = index // 2 | |
col = index % 2 | |
new_image.paste(image, (col*width, row*height)) | |
# new_image.save(f'{args.output_dir}/pred_img_{sample_index}_{args.local_rank}.jpg') | |
# results.insert(0, new_image) | |
# return new_image | |
os.system('nvidia-smi') | |
torch.cuda.empty_cache() | |
os.system('nvidia-smi') | |
return tuple(results), composed_prompt | |
elif radio == 'TextDiffuser-2-LCM': | |
generator = torch.Generator(device=pipe.device).manual_seed(random.randint(0,1000)) | |
image = pipe( | |
prompt=user_prompt, | |
generator=generator, | |
# negative_prompt=negative_prompt, | |
num_inference_steps=1, | |
guidance_scale=1, | |
num_images_per_prompt=slider_batch, | |
).images | |
os.system('nvidia-smi') | |
torch.cuda.empty_cache() | |
os.system('nvidia-smi') | |
return tuple(image), composed_prompt | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center; max-width: 1600px; margin: 20px auto;"> | |
<h2 style="font-weight: 900; font-size: 2.5rem; margin: 0rem"> | |
TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering | |
</h2> | |
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem"> | |
<a href="https://jingyechen.github.io/">Jingye Chen</a>, <a href="https://hypjudy.github.io/website/">Yupan Huang</a>, <a href="https://scholar.google.com/citations?user=0LTZGhUAAAAJ&hl=en">Tengchao Lv</a>, <a href="https://www.microsoft.com/en-us/research/people/lecu/">Lei Cui</a>, <a href="https://cqf.io/">Qifeng Chen</a>, <a href="https://thegenerality.com/">Furu Wei</a> | |
</h2> | |
<h2 style="font-weight: 460; font-size: 1.1rem; margin: 0rem"> | |
HKUST, Sun Yat-sen University, Microsoft Research | |
</h2> | |
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem"> | |
[<a href="https://arxiv.org/abs/2311.16465" style="color:blue;">arXiv</a>] | |
[<a href="https://github.com/microsoft/unilm/tree/master/textdiffuser-2" style="color:blue;">Code</a>] | |
</h3> | |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
We propose <b>TextDiffuser-2</b>, aiming at unleashing the power of language models for text rendering. Specifically, we <b>tame a language model into a layout planner</b> to transform user prompt into a layout using the caption-OCR pairs. The language model demonstrates flexibility and automation by inferring keywords from user prompts or incorporating user-specified keywords to determine their positions. Secondly, we <b>leverage the language model in the diffusion model as the layout encoder</b> to represent the position and content of text at the line level. This approach enables diffusion models to generate text images with broader diversity. | |
</h2> | |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
👀 <b>Tips for using this demo</b>: <b>(1)</b> Please carefully read the disclaimer in the below. <b>(2)</b> The specification of keywords is optional. If provided, the language model will do its best to plan layouts using the given keywords. <b>(3)</b> If a template is given, the layout planner (M1) is not used. <b>(4)</b> Three operations, including redo, undo, and skip are provided. When using skip, only the left-top point of a keyword will be recorded, resulting in more diversity but sometimes decreasing the accuracy. <b>(5)</b> The layout planner can produce different layouts. You can increase the temperature to enhance the diversity. | |
</h2> | |
<h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem"> | |
✨ <b>[L] [C] [M]</b>: We also provide the model combining <b>TextDiffuser-2</b> and <b>LCM</b>. The inference speed is fast using less sampling steps. | |
</h2> | |
<style> | |
.scaled-image { | |
transform: scale(1); | |
} | |
</style> | |
<img src="https://i.ibb.co/56JVg5j/architecture.jpg" alt="textdiffuser-2" class="scaled-image"> | |
</div> | |
""") | |
with gr.Tab("Text-to-Image"): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox(label="Input your prompt here.", placeholder="A beautiful city skyline stamp of Shanghai") | |
keywords = gr.Textbox(label="(Optional) Input your keywords here. Keywords should be seperated by / (e.g., keyword1/keyword2/...)", placeholder="keyword1/keyword2") | |
# 这里加一个会话框 | |
with gr.Accordion("(Optional) Template - Click to paint", open=False): | |
with gr.Row(): | |
with gr.Column(scale=1): | |
i = gr.Image(label="Canvas", type='filepath', value=f'./gray256.jpg', height=256, width=256) | |
with gr.Column(scale=1): | |
t = gr.Textbox(label="Keyword", value='input_keyword') | |
redo = gr.Button(value='Redo - Cancel the last keyword') # 如何给b绑定事件 | |
undo = gr.Button(value='Undo - Clear the canvas') # 如何给b绑定事件 | |
skip_button = gr.Button(value='Skip - Operate next keyword') # 如何给b绑定事件 | |
i.select(get_pixels,[i,t],[i]) | |
redo.click(exe_redo, [i,t],[i]) | |
undo.click(exe_undo, [i,t],[i]) | |
skip_button.click(skip_fun, [i,t]) | |
radio = gr.Radio(["TextDiffuser-2", "TextDiffuser-2-LCM"], label="Choice of models", value="TextDiffuser-2") | |
slider_step = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Sampling step", info="The sampling step for TextDiffuser-2. You may decease the step to 4 when using LCM.") | |
slider_guidance = gr.Slider(minimum=1, maximum=9, value=7.5, step=0.5, label="Scale of classifier-free guidance", info="The scale of cfg and is set to 7.5 in default. When using LCM, cfg is set to 1.") | |
slider_batch = gr.Slider(minimum=1, maximum=4, value=4, step=1, label="Batch size", info="The number of images to be sampled.") | |
slider_temperature = gr.Slider(minimum=0.1, maximum=2, value=0.7, step=0.1, label="Temperature", info="Control the diversity of layout planner. Higher value indicates more diversity.") | |
slider_natural = gr.Checkbox(label="Natural image generation", value=False, info="The text position and content info will not be incorporated.") | |
# slider_seed = gr.Slider(minimum=1, maximum=10000, label="Seed", randomize=True) | |
button = gr.Button("Generate") | |
with gr.Column(scale=1): | |
output = gr.Gallery(label='Generated image') | |
with gr.Accordion("Intermediate results", open=False): | |
gr.Markdown("Composed prompt") | |
composed_prompt = gr.Textbox(label='') | |
# with gr.Accordion("Intermediate results", open=False): | |
# gr.Markdown("Layout, segmentation mask, and details of segmentation mask from left to right.") | |
# intermediate_results = gr.Image(label='') | |
# gr.Markdown("## Prompt Examples") | |
button.click(text_to_image, inputs=[prompt,keywords,radio,slider_step,slider_guidance,slider_batch,slider_temperature,slider_natural], outputs=[output, composed_prompt]) | |
gr.Markdown("## Prompt Examples") | |
gr.Examples( | |
[ | |
["A beautiful city skyline stamp of Shanghai", ""], | |
["A stamp of U.S.A.", ""], | |
["A book cover named summer vibe", ""], | |
], | |
prompt, | |
keywords, | |
examples_per_page=10 | |
) | |
gr.HTML( | |
""" | |
<div style="text-align: justify; max-width: 1100px; margin: 20px auto;"> | |
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> | |
<b>Version</b>: 1.0 | |
</h3> | |
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> | |
<b>Contact</b>: | |
For help or issues using TextDiffuser-2, please email Jingye Chen <a href="mailto:[email protected]">([email protected])</a>, Yupan Huang <a href="mailto:[email protected]">([email protected])</a> or submit a GitHub issue. For other communications related to TextDiffuser-2, please contact Lei Cui <a href="mailto:[email protected]">([email protected])</a> or Furu Wei <a href="mailto:[email protected]">([email protected])</a>. | |
</h3> | |
<h3 style="font-weight: 450; font-size: 0.8rem; margin: 0rem"> | |
<b>Disclaimer</b>: | |
Please note that the demo is intended for academic and research purposes <b>ONLY</b>. Any use of the demo for generating inappropriate content is strictly prohibited. The responsibility for any misuse or inappropriate use of the demo lies solely with the users who generated such content, and this demo shall not be held liable for any such use. | |
</h3> | |
</div> | |
""" | |
) | |
demo.launch() |