import streamlit as st from keybert import KeyBERT from transformers.pipelines import pipeline st.title('Title Summarization') path='checkpoint-210000' hf_model = pipeline("feature-extraction",model=path,tokenizer='bert-base-uncased' ) etsy_model = KeyBERT(model=hf_model) text = st.text_area("Enter title here for the summarization:") if st.button('Generate'): out = etsy_model.extract_keywords(text, keyphrase_ngram_range=(1,3), stop_words='english', top_n=20) if len(out[0][0]) < 20: out = etsy_model.extract_keywords(text, keyphrase_ngram_range=(1,4), stop_words='english', top_n=20) if len(out)==20: show=[out[0],out[4],out[9],out[14],out[19]] else: show=out st.json(show)