JPeace18 commited on
Commit
340cece
·
verified ·
1 Parent(s): 9a8ef3a
Files changed (1) hide show
  1. app.py +19 -16
app.py CHANGED
@@ -1,22 +1,25 @@
1
- from transformers import GPT2LMHeadModel, GPT2Tokenizer
2
  import gradio as gr
3
- import subprocess # Import subprocess module to run shell commands
4
 
5
- # Install Rust using shell command
6
- subprocess.run(['curl', '--proto', '=https', '--tlsv1.2', '-sSf', 'https://sh.rustup.rs', '|', 'sh'])
 
 
7
 
8
- # Load pre-trained GPT-2 model and tokenizer
9
- model_name = "gpt2" # You can use other models like "gpt2-medium", "gpt2-large", etc.
10
- model = GPT2LMHeadModel.from_pretrained(model_name)
11
- tokenizer = GPT2Tokenizer.from_pretrained(model_name)
 
 
 
12
 
13
- # Function to generate response
14
- def generate_response(query):
15
- input_ids = tokenizer.encode(query, return_tensors="pt")
16
- output = model.generate(input_ids, max_length=100, num_return_sequences=1, no_repeat_ngram_size=2)
17
- response = tokenizer.decode(output[0], skip_special_tokens=True)
18
- return response
19
 
20
- # Interface setup
21
- iface = gr.Interface(fn=generate_response, inputs="text", outputs="text", title="Generative AI Query Response")
22
  iface.launch()
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
 
4
+ # Load your pretrained model and tokenizer
5
+ model_name = "your-model-name" # Replace with your model's name
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
8
 
9
+ # Define the Gradio interface
10
+ iface = gr.Interface(
11
+ fn=generate_answer,
12
+ inputs=[gr.Textbox(lines=5, placeholder="Ask a question")],
13
+ outputs="textbox",
14
+ title="AI Answer Generator",
15
+ )
16
 
17
+ # Function to generate an answer using your model
18
+ def generate_answer(question):
19
+ inputs = tokenizer([question], return_tensors="pt")
20
+ outputs = model.generate(**inputs)
21
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+ return answer
23
 
24
+ # Launch the interface
 
25
  iface.launch()