Spaces:
Runtime error
Runtime error
File size: 1,413 Bytes
568d45f 17a1ebc 568d45f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
import random
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('clip-ViT-B-32')
def fake_gan():
images = [
(random.choice(
[
"https://upload.wikimedia.org/wikipedia/commons/6/69/NASA-HS201427a-HubbleUltraDeepField2014-20140603.jpg",
"https://upload.wikimedia.org/wikipedia/commons/7/73/Cycliste_%C3%A0_place_d%27Italie-Paris.jpg",
"https://upload.wikimedia.org/wikipedia/commons/3/31/Great_white_shark_south_africa.jpg",
]
), f"label {i}" if i != 0 else "label" * 50)
for i in range(3)
]
return images
def search_images_from_text(text):
emb = model.encode(text)
return fake_gan()
def search_images_from_image(image):
image_emb = model.encode(image)
return fake_gan()
def main():
dataset = load_dataset("JLD/unsplash25k-image-embeddings", trust_remote_code=True, split="train").with_format("torch", device="cuda:0")
text_to_image_iface = gr.Interface(fn=search_images_from_text, inputs="text", outputs="gallery")
image_to_image_iface = gr.Interface(fn=search_images_from_image, inputs="image", outputs="gallery")
demo = gr.TabbedInterface([text_to_image_iface, image_to_image_iface], ["Text query", "Image query"])
demo.launch()
if __name__ == "__main__":
main()
|