import gradio as gr from tifffile import imread from PIL import Image import matplotlib.pyplot as plt from analyse import analyse_paths import numpy as np def process(cell_id, foci_file, traces_file): paths, traces, fig, extracted_peaks = analyse_paths(cell_id, foci_file.name, traces_file.name) extracted_peaks.to_csv('tmp') return paths, [Image.fromarray(im) for im in traces], fig, extracted_peaks, 'tmp' def preview_image(file1): if file1: im = imread(file1.name) print(im.shape) return Image.fromarray(np.max(im, axis=0)) else: return None with gr.Blocks() as demo: with gr.Row(): with gr.Column(): cellid_input = gr.Textbox(label="Cell ID", placeholder="Image_1") image_input = gr.File(label="Input foci image") image_preview = gr.Image(label="Max projection of foci image") image_input.change(fn=preview_image, inputs=image_input, outputs=image_preview) path_input = gr.File(label="SNT traces file") with gr.Column(): trace_output = gr.Image(label="Overlayed paths") image_output=gr.Gallery(label="Traced paths") plot_output=gr.Plot(label="Foci intensity traces") data_output=gr.DataFrame(label="Detected peak data")#, "Peak 1 pos", "Peak 1 int"]) data_file_output=gr.File(label="Output data file (.csv)") with gr.Row(): greet_btn = gr.Button("Process") greet_btn.click(fn=process, inputs=[cellid_input, image_input, path_input], outputs=[trace_output, image_output, plot_output, data_output, data_file_output], api_name="process") if __name__ == "__main__": demo.launch()