import gradio as gr from huggingface_hub import InferenceClient import os """ Copied from inference in colab notebook """ from transformers import pipeline # Load model and tokenizer globally to avoid reloading for every request model_path = "Mat17892/t5small_enfr_opus" # translator = pipeline("translation_xx_to_yy", model=model_path) # def respond( # message: str, # history: list[tuple[str, str]], # system_message: str, # max_tokens: int, # temperature: float, # top_p: float, # ): # message = "translate English to French:" + message # response = translator(message)[0] # yield response['translation_text'] from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer import threading tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_path) def respond( message: str, system_message: str, max_tokens: int = 128, temperature: float = 1.0, top_p: float = 1.0, ): # Preprocess the input message input_text = system_message + " " + message input_ids = tokenizer(input_text, return_tensors="pt").input_ids # Set up the streamer streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True) # Generate in a separate thread to avoid blocking generation_thread = threading.Thread( target=model.generate, kwargs={ "input_ids": input_ids, "max_new_tokens": max_tokens, "do_sample": True, "temperature": temperature, "top_p": top_p, "streamer": streamer, }, ) generation_thread.start() # Stream the output progressively generated_text = "" for token in streamer: # Append each token to the accumulated text generated_text += token yield generated_text """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # Define the interface with gr.Blocks() as demo: gr.Markdown("# Google Translate-like Interface") with gr.Row(): with gr.Column(): source_textbox = gr.Textbox( placeholder="Enter text in English...", label="Source Text (English)", lines=5, ) with gr.Column(): translated_textbox = gr.Textbox( placeholder="Translation will appear here...", label="Translated Text (French)", lines=5, interactive=False, ) translate_button = gr.Button("Translate") with gr.Accordion("Advanced Settings", open=False): system_message_input = gr.Textbox( value="translate English to French:", label="System message", ) max_tokens_slider = gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ) temperature_slider = gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ) top_p_slider = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ) # Define functionality translate_button.click( respond, inputs=[ source_textbox, system_message_input, max_tokens_slider, temperature_slider, top_p_slider, ], outputs=translated_textbox, ) if __name__ == "__main__": demo.launch()