uno-recognizer / app.py
Hayloo9838's picture
Update app.py
b2f34f1 verified
import gradio as gr
import cv2
import torch
import numpy as np
from transformers import CLIPProcessor, CLIPVisionModel
from PIL import Image
from torch import nn
import requests
from huggingface_hub import hf_hub_download
MODEL_PATH = "pytorch_model.bin"
REPO_ID = "Hayloo9838/uno-recognizer"
class CLIPVisionClassifier(nn.Module):
def __init__(self, num_labels):
super().__init__()
self.vision_model = CLIPVisionModel.from_pretrained('openai/clip-vit-large-patch14')
self.classifier = nn.Linear(self.vision_model.config.hidden_size, num_labels, bias=False)
self.dropout = nn.Dropout(0.1)
def forward(self, pixel_values, output_attentions=False):
outputs = self.vision_model(pixel_values, output_attentions=output_attentions)
pooled_output = outputs.pooler_output
logits = self.classifier(pooled_output)
if output_attentions:
return logits, outputs.attentions
return logits
def get_attention_map(attentions):
attention = attentions[-1]
attention = attention.mean(dim=1)
attention = attention[0, 0, 1:]
num_patches = int(np.sqrt(attention.shape[0]))
attention_map = attention.reshape(num_patches, num_patches)
attention_map = (attention_map - attention_map.min()) / (attention_map.max() - attention_map.min())
return attention_map.cpu().numpy()
def apply_heatmap(image, attention_map):
heatmap = cv2.applyColorMap(np.uint8(255 * attention_map), cv2.COLORMAP_JET)
if isinstance(image, Image.Image):
image = np.array(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
attention_map_resized = cv2.resize(attention_map, image.shape[:2][::-1], interpolation=cv2.INTER_LINEAR)
attention_map_resized = (attention_map_resized - attention_map_resized.min()) / (attention_map_resized.max() - attention_map_resized.min())
heatmap_resized = cv2.applyColorMap(np.uint8(255 * attention_map_resized), cv2.COLORMAP_JET)
output = cv2.addWeighted(image, 0.7, heatmap_resized, 0.3, 0)
return output
def process_image_classification(image):
model, processor, reverse_mapping, device = load_model()
image = Image.fromarray(image)
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(device)
with torch.no_grad():
logits, attentions = model(pixel_values, output_attentions=True)
probs = torch.nn.functional.softmax(logits, dim=-1)
prediction = torch.argmax(probs).item()
attention_map = get_attention_map(attentions)
visualization = apply_heatmap(image, attention_map)
card_name = reverse_mapping[prediction]
confidence = probs[0][prediction].item()
return visualization, card_name, confidence
def load_model():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_PATH)
checkpoint = torch.load(model_path, map_location=device)
label_mapping = checkpoint['label_mapping']
reverse_mapping = {v: k for k, v in label_mapping.items()}
model = CLIPVisionClassifier(len(label_mapping))
model.load_state_dict(checkpoint["model_state_dict"])
model.to(device).eval()
processor = CLIPProcessor.from_pretrained('openai/clip-vit-large-patch14')
return model, processor, reverse_mapping, device
def gradio_interface():
gr.Interface(
fn=process_image_classification,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(label="Heatmap Plot"),
gr.Textbox(label="Predicted Card"),
gr.Textbox(label="Confidence")
],
title="Uno Card Recognizer",
description="Upload an image or use your webcam to recognize an Uno card."
).launch()
if __name__ == "__main__":
gradio_interface()