Spaces:
Running
Running
File size: 14,328 Bytes
0d24772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import PyPDF2
import pytesseract
from pdf2image import convert_from_bytes
import arabic_reshaper
from bidi.algorithm import get_display
from transformers import pipeline
from langchain.text_splitter import RecursiveCharacterTextSplitter
import io
import os
import re
import torch
from typing import List, Dict
from agents import create_judge_agent, create_advocate_agent
from crewai import Task, Crew
class PDFProcessor:
def __init__(self):
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500, # Reduced chunk size for better memory management
chunk_overlap=50,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
# Initialize models with better memory management
self.summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-6-6", # Using a smaller, faster model
device="cpu", # Use CPU for better compatibility
torch_dtype=torch.float32,
batch_size=1
)
self.progress_callback = None
# Configure torch for memory efficiency
#if torch.backends.mps.is_available(): # For Mac M1/M2
# torch.backends.mps.set_per_process_memory_fraction(0.7) # Use only 70% of available memory
if torch.cuda.is_available(): # For CUDA devices
torch.cuda.empty_cache()
torch.cuda.set_per_process_memory_fraction(0.7)
def set_progress_callback(self, callback):
"""Set a callback function to report progress."""
self.progress_callback = callback
def update_progress(self, message: str, progress: float):
"""Update progress through callback if available."""
if self.progress_callback:
self.progress_callback(message, progress)
def extract_text_from_pdf(self, pdf_bytes: bytes) -> str:
"""Extract text from PDF, handling both searchable and scanned PDFs with improved accuracy."""
text = ""
try:
# Try to extract text directly first using PyPDF2
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_bytes))
extracted_text = []
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text.strip():
extracted_text.append(page_text)
# If direct extraction yielded results, process it
if extracted_text:
text = "\n\n".join(extracted_text)
else:
# If no text was extracted, use OCR with improved settings
images = convert_from_bytes(pdf_bytes, dpi=300) # Higher DPI for better quality
for image in images:
# Configure tesseract for better Arabic text recognition
custom_config = r'--oem 1 --psm 3 -l ara+eng'
page_text = pytesseract.image_to_string(
image,
config=custom_config,
lang='ara+eng'
)
if page_text.strip():
extracted_text.append(page_text)
text = "\n\n".join(extracted_text)
# Clean up the text
text = self._clean_text(text)
# Handle Arabic text with improved reshaping
text = self._process_arabic_text(text)
except Exception as e:
raise Exception(f"Error processing PDF: {str(e)}")
return text
def _clean_text(self, text: str) -> str:
"""Clean and normalize extracted text."""
# Remove control characters
text = "".join(char for char in text if char.isprintable() or char in "\n\r\t")
# Normalize whitespace
text = re.sub(r'\s+', ' ', text)
text = re.sub(r'\n\s*\n', '\n\n', text)
# Fix common OCR issues
text = re.sub(r'(?<=[a-z])(?=[A-Z])', ' ', text)
text = re.sub(r'([.!?])\s*(?=[A-Z])', r'\1\n', text)
# Remove empty lines and extra whitespace
lines = [line.strip() for line in text.split('\n')]
text = '\n'.join(line for line in lines if line)
return text.strip()
def _process_arabic_text(self, text: str) -> str:
"""Process Arabic text with improved handling."""
try:
# Reshape Arabic text
reshaped_text = arabic_reshaper.reshape(text)
# Apply bidirectional algorithm
text = get_display(reshaped_text)
# Fix common Arabic text issues
text = re.sub(r'([ء-ي])\s+([ء-ي])', r'\1\2', text) # Remove spaces between Arabic letters
text = re.sub(r'[\u200B-\u200F\u202A-\u202E]', '', text) # Remove Unicode control characters
return text
except Exception as e:
print(f"Warning: Error in Arabic text processing: {str(e)}")
return text # Return original text if processing fails
def summarize_document(self, text: str) -> str:
"""Generate a summary of the document with improved memory management and handling of Arabic text."""
try:
# Split text into smaller chunks with consideration for Arabic text
chunks = self.text_splitter.split_text(text)
if not chunks:
return self._create_extractive_summary(text)
summaries = []
total_chunks = len(chunks)
# Process chunks in batches with improved memory management
batch_size = 2 # Reduced batch size for better stability
for i in range(0, total_chunks, batch_size):
# Clear memory before processing new batch
if torch.cuda.is_available():
torch.cuda.empty_cache()
elif torch.backends.mps.is_available():
import gc
gc.collect()
torch.mps.empty_cache()
batch = chunks[i:i + batch_size]
for chunk in batch:
if not chunk.strip():
continue
try:
# Determine if chunk is primarily Arabic
is_arabic = any(ord(c) >= 0x0600 and ord(c) <= 0x06FF for c in chunk)
# Adjust summary parameters based on text type
max_length = 150 if is_arabic else 130
min_length = 40 if is_arabic else 30
# Generate summary with optimized parameters
summary = self.summarizer(
chunk,
max_length=max_length,
min_length=min_length,
do_sample=False,
num_beams=1, # Single beam for efficiency
early_stopping=True,
truncation=True
)
summary_text = summary[0]['summary_text'].strip()
if summary_text:
summaries.append(summary_text)
except Exception as e:
print(f"Warning: Error summarizing chunk: {str(e)}")
# Fallback to extractive summary for this chunk
chunk_summary = self._create_extractive_summary(chunk, sentences_count=2)
if chunk_summary:
summaries.append(chunk_summary)
# Update progress
progress = min(0.3 + (i / total_chunks) * 0.4, 0.7)
self.update_progress("جاري تلخيص المستند...", progress)
if not summaries:
return self._create_extractive_summary(text)
# Combine summaries with improved formatting
final_summary = " ".join(summaries)
# Clean and process the final summary
final_summary = self._clean_text(final_summary)
final_summary = self._process_arabic_text(final_summary)
# Ensure reasonable length
if len(final_summary) > 2000:
final_summary = self._create_extractive_summary(final_summary, sentences_count=10)
return final_summary
except Exception as e:
print(f"Error in summarization: {str(e)}")
return self._create_extractive_summary(text)
def _create_extractive_summary(self, text: str, sentences_count: int = 5) -> str:
"""Create a simple extractive summary as a fallback method."""
try:
# Split text into sentences
sentences = re.split(r'[.!?]\s+', text)
# Remove very short sentences and clean
sentences = [s.strip() for s in sentences if len(s.strip()) > 30]
if not sentences:
return text[:500] + "..." # Return truncated text if no good sentences
# Score sentences based on position and length
scored_sentences = []
for i, sentence in enumerate(sentences):
score = 0
# Prefer sentences from the beginning and end of the document
if i < len(sentences) * 0.3: # First 30%
score += 2
elif i > len(sentences) * 0.7: # Last 30%
score += 1
# Prefer medium-length sentences
if 50 <= len(sentence) <= 200:
score += 1
scored_sentences.append((score, sentence))
# Sort by score and select top sentences
scored_sentences.sort(reverse=True)
selected_sentences = [s[1] for s in scored_sentences[:sentences_count]]
# Sort sentences by their original order
selected_sentences.sort(key=lambda s: sentences.index(s))
# Join sentences and clean
summary = ". ".join(selected_sentences)
summary = self._clean_text(summary)
summary = self._process_arabic_text(summary)
return summary
except Exception as e:
print(f"Error in extractive summary: {str(e)}")
return text[:500] + "..." # Return truncated text as last resort
def analyze_legal_issues(self, text: str) -> Dict:
"""Analyze legal issues in the document using the Judge agent."""
judge_agent = create_judge_agent()
task_description = f"""
تحليل المستند التالي وتحديد المخالفات القانونية المحتملة وفقاً للقوانين الإماراتية:
{text}
يجب أن يتضمن التحليل:
1. المخالفات القانونية المحتملة
2. المواد القانونية ذات الصلة
3. التوصيات للتصحيح
"""
task = Task(
description=task_description,
agent=judge_agent,
expected_output="تحليل قانوني شامل للمخالفات والتوصيات"
)
crew = Crew(agents=[judge_agent], tasks=[task])
result = crew.kickoff()
return {"legal_analysis": result}
def map_to_uae_legislation(self, text: str) -> Dict:
"""Map document content to relevant UAE laws and regulations."""
advocate_agent = create_advocate_agent()
task_description = f"""
تحليل المستند التالي وربطه بالقوانين والتشريعات الإماراتية ذات الصلة:
{text}
يجب أن يتضمن التحليل:
1. القوانين الإماراتية ذات الصلة
2. المواد القانونية المحددة
3. التفسير القانوني للعلاقة
"""
task = Task(
description=task_description,
agent=advocate_agent,
expected_output="خريطة تفصيلية للقوانين والتشريعات ذات الصلة"
)
crew = Crew(agents=[advocate_agent], tasks=[task])
result = crew.kickoff()
return {"legislation_mapping": result}
def process_document(self, pdf_bytes: bytes) -> Dict:
"""Process the document through all steps with progress tracking."""
try:
# Extract text from PDF
self.update_progress("استخراج النص من المستند...", 0.1)
text = self.extract_text_from_pdf(pdf_bytes)
if not text.strip():
raise ValueError("لم يتم العثور على نص قابل للقراءة في المستند")
# Generate summary
self.update_progress("إنشاء ملخص للمستند...", 0.3)
summary = self.summarize_document(text)
# Analyze legal issues
self.update_progress("تحليل القضايا القانونية...", 0.5)
legal_analysis = self.analyze_legal_issues(text)
# Map to UAE legislation
self.update_progress("ربط المستند بالتشريعات الإماراتية...", 0.7)
legislation_mapping = self.map_to_uae_legislation(text)
self.update_progress("اكتمل التحليل!", 1.0)
return {
"summary": summary,
"legal_analysis": legal_analysis["legal_analysis"],
"legislation_mapping": legislation_mapping["legislation_mapping"],
"raw_text": text # Include raw text for translation if needed
}
except Exception as e:
self.update_progress(f"حدث خطأ: {str(e)}", 0)
raise |